direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C4×Dic5, C20⋊4C4, C5⋊2C42, C22.3D10, (C2×C4).6D5, C2.2(C4×D5), (C2×C20).7C2, C10.10(C2×C4), C2.2(C2×Dic5), (C2×C10).3C22, (C2×Dic5).6C2, SmallGroup(80,11)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — C4×Dic5 |
Generators and relations for C4×Dic5
G = < a,b,c | a4=b10=1, c2=b5, ab=ba, ac=ca, cbc-1=b-1 >
(1 45 28 38)(2 46 29 39)(3 47 30 40)(4 48 21 31)(5 49 22 32)(6 50 23 33)(7 41 24 34)(8 42 25 35)(9 43 26 36)(10 44 27 37)(11 62 71 51)(12 63 72 52)(13 64 73 53)(14 65 74 54)(15 66 75 55)(16 67 76 56)(17 68 77 57)(18 69 78 58)(19 70 79 59)(20 61 80 60)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 62 6 67)(2 61 7 66)(3 70 8 65)(4 69 9 64)(5 68 10 63)(11 33 16 38)(12 32 17 37)(13 31 18 36)(14 40 19 35)(15 39 20 34)(21 58 26 53)(22 57 27 52)(23 56 28 51)(24 55 29 60)(25 54 30 59)(41 75 46 80)(42 74 47 79)(43 73 48 78)(44 72 49 77)(45 71 50 76)
G:=sub<Sym(80)| (1,45,28,38)(2,46,29,39)(3,47,30,40)(4,48,21,31)(5,49,22,32)(6,50,23,33)(7,41,24,34)(8,42,25,35)(9,43,26,36)(10,44,27,37)(11,62,71,51)(12,63,72,52)(13,64,73,53)(14,65,74,54)(15,66,75,55)(16,67,76,56)(17,68,77,57)(18,69,78,58)(19,70,79,59)(20,61,80,60), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,62,6,67)(2,61,7,66)(3,70,8,65)(4,69,9,64)(5,68,10,63)(11,33,16,38)(12,32,17,37)(13,31,18,36)(14,40,19,35)(15,39,20,34)(21,58,26,53)(22,57,27,52)(23,56,28,51)(24,55,29,60)(25,54,30,59)(41,75,46,80)(42,74,47,79)(43,73,48,78)(44,72,49,77)(45,71,50,76)>;
G:=Group( (1,45,28,38)(2,46,29,39)(3,47,30,40)(4,48,21,31)(5,49,22,32)(6,50,23,33)(7,41,24,34)(8,42,25,35)(9,43,26,36)(10,44,27,37)(11,62,71,51)(12,63,72,52)(13,64,73,53)(14,65,74,54)(15,66,75,55)(16,67,76,56)(17,68,77,57)(18,69,78,58)(19,70,79,59)(20,61,80,60), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,62,6,67)(2,61,7,66)(3,70,8,65)(4,69,9,64)(5,68,10,63)(11,33,16,38)(12,32,17,37)(13,31,18,36)(14,40,19,35)(15,39,20,34)(21,58,26,53)(22,57,27,52)(23,56,28,51)(24,55,29,60)(25,54,30,59)(41,75,46,80)(42,74,47,79)(43,73,48,78)(44,72,49,77)(45,71,50,76) );
G=PermutationGroup([[(1,45,28,38),(2,46,29,39),(3,47,30,40),(4,48,21,31),(5,49,22,32),(6,50,23,33),(7,41,24,34),(8,42,25,35),(9,43,26,36),(10,44,27,37),(11,62,71,51),(12,63,72,52),(13,64,73,53),(14,65,74,54),(15,66,75,55),(16,67,76,56),(17,68,77,57),(18,69,78,58),(19,70,79,59),(20,61,80,60)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,62,6,67),(2,61,7,66),(3,70,8,65),(4,69,9,64),(5,68,10,63),(11,33,16,38),(12,32,17,37),(13,31,18,36),(14,40,19,35),(15,39,20,34),(21,58,26,53),(22,57,27,52),(23,56,28,51),(24,55,29,60),(25,54,30,59),(41,75,46,80),(42,74,47,79),(43,73,48,78),(44,72,49,77),(45,71,50,76)]])
C4×Dic5 is a maximal subgroup of
C20.8Q8 C40⋊8C4 D20⋊7C4 D4⋊2Dic5 C20⋊C8 C10.C42 Dic5⋊C8 D5×C42 C42⋊D5 C23.11D10 C23.D10 Dic5⋊4D4 Dic5.5D4 Dic5⋊3Q8 C20⋊Q8 Dic5.Q8 C4.Dic10 C4⋊C4⋊7D5 D20⋊8C4 C4⋊C4⋊D5 C23.21D10 C20.17D4 C20⋊D4 Dic5⋊Q8 C20.23D4
C4×Dic5 is a maximal quotient of
C42.D5 C40⋊8C4 C10.10C42
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 5A | 5B | 10A | ··· | 10F | 20A | ··· | 20H |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 5 | ··· | 5 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | + | |||
image | C1 | C2 | C2 | C4 | C4 | D5 | Dic5 | D10 | C4×D5 |
kernel | C4×Dic5 | C2×Dic5 | C2×C20 | Dic5 | C20 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 2 | 1 | 8 | 4 | 2 | 4 | 2 | 8 |
Matrix representation of C4×Dic5 ►in GL4(𝔽41) generated by
9 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 40 | 34 |
1 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
0 | 0 | 26 | 21 |
0 | 0 | 3 | 15 |
G:=sub<GL(4,GF(41))| [9,0,0,0,0,9,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,40,0,0,0,0,0,40,0,0,1,34],[1,0,0,0,0,9,0,0,0,0,26,3,0,0,21,15] >;
C4×Dic5 in GAP, Magma, Sage, TeX
C_4\times {\rm Dic}_5
% in TeX
G:=Group("C4xDic5");
// GroupNames label
G:=SmallGroup(80,11);
// by ID
G=gap.SmallGroup(80,11);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,20,46,1604]);
// Polycyclic
G:=Group<a,b,c|a^4=b^10=1,c^2=b^5,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export