Extensions 1→N→G→Q→1 with N=C4○D4 and Q=F5

Direct product G=N×Q with N=C4○D4 and Q=F5

Semidirect products G=N:Q with N=C4○D4 and Q=F5
extensionφ:Q→Out NdρLabelID
C4○D41F5 = D5⋊C4≀C2φ: F5/D5C2 ⊆ Out C4○D4408C4oD4:1F5320,1130
C4○D42F5 = C4○D4⋊F5φ: F5/D5C2 ⊆ Out C4○D4408C4oD4:2F5320,1131
C4○D43F5 = C4○D20⋊C4φ: F5/D5C2 ⊆ Out C4○D4808C4oD4:3F5320,1132
C4○D44F5 = D4⋊F5⋊C2φ: F5/D5C2 ⊆ Out C4○D4808C4oD4:4F5320,1133
C4○D45F5 = D5.2+ 1+4φ: F5/D5C2 ⊆ Out C4○D4408C4oD4:5F5320,1604

Non-split extensions G=N.Q with N=C4○D4 and Q=F5
extensionφ:Q→Out NdρLabelID
C4○D4.1F5 = D4.(C5⋊C8)φ: F5/D5C2 ⊆ Out C4○D41608C4oD4.1F5320,270
C4○D4.2F5 = Dic5.22C24φ: F5/D5C2 ⊆ Out C4○D4808C4oD4.2F5320,1602
C4○D4.3F5 = C5⋊C16.C22φ: trivial image1608C4oD4.3F5320,1129
C4○D4.4F5 = Dic5.21C24φ: trivial image808C4oD4.4F5320,1601