Copied to
clipboard

G = C4○D20⋊C4order 320 = 26·5

3rd semidirect product of C4○D20 and C4 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4○D43F5, C4○D203C4, D4.9(C2×F5), Q8.9(C2×F5), D42D59C4, D20⋊C45C2, Q82D59C4, Q8⋊F55C2, D20.9(C2×C4), (C4×D5).56D4, D5.5(C4○D8), C5⋊(C23.24D4), C4⋊F5.10C22, C4.23(C22×F5), D10.101(C2×D4), C20.23(C22×C4), D5⋊C8.16C22, Dic10.9(C2×C4), Dic5.11(C2×D4), (C22×D5).73D4, (D4×D5).15C22, (C4×D5).45C23, C4.47(C22⋊F5), (Q8×D5).13C22, C20.47(C22⋊C4), (C2×Dic5).125D4, C22.6(C22⋊F5), D10.18(C22⋊C4), D10.C236C2, Dic5.50(C22⋊C4), (C2×D5⋊C8)⋊4C2, (C5×C4○D4)⋊3C4, (D5×C4○D4).7C2, (C5×D4).9(C2×C4), (C2×C4).90(C2×F5), (C5×Q8).9(C2×C4), (C2×C20).68(C2×C4), (C4×D5).29(C2×C4), C2.36(C2×C22⋊F5), C10.35(C2×C22⋊C4), (C2×C4×D5).212C22, (C2×C10).6(C22⋊C4), SmallGroup(320,1132)

Series: Derived Chief Lower central Upper central

C1C20 — C4○D20⋊C4
C1C5C10Dic5C4×D5D5⋊C8C2×D5⋊C8 — C4○D20⋊C4
C5C10C20 — C4○D20⋊C4
C1C4C2×C4C4○D4

Generators and relations for C4○D20⋊C4
 G = < a,b,c,d | a4=c2=d4=1, b10=a2, ab=ba, ac=ca, ad=da, cbc=a2b9, dbd-1=b7, dcd-1=a2bc >

Subgroups: 682 in 158 conjugacy classes, 50 normal (40 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D5, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C2×D4, C2×Q8, C4○D4, C4○D4, Dic5, Dic5, C20, C20, F5, D10, D10, C2×C10, C2×C10, D4⋊C4, Q8⋊C4, C42⋊C2, C22×C8, C2×C4○D4, C5⋊C8, Dic10, Dic10, C4×D5, C4×D5, D20, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C2×F5, C22×D5, C22×D5, C23.24D4, D5⋊C8, D5⋊C8, C4×F5, C4⋊F5, C2×C5⋊C8, C22⋊F5, C2×C4×D5, C2×C4×D5, C4○D20, C4○D20, D4×D5, D4×D5, D42D5, D42D5, Q8×D5, Q82D5, C5×C4○D4, D20⋊C4, Q8⋊F5, C2×D5⋊C8, D10.C23, D5×C4○D4, C4○D20⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, F5, C2×C22⋊C4, C4○D8, C2×F5, C23.24D4, C22⋊F5, C22×F5, C2×C22⋊F5, C4○D20⋊C4

Smallest permutation representation of C4○D20⋊C4
On 80 points
Generators in S80
(1 58 11 48)(2 59 12 49)(3 60 13 50)(4 41 14 51)(5 42 15 52)(6 43 16 53)(7 44 17 54)(8 45 18 55)(9 46 19 56)(10 47 20 57)(21 67 31 77)(22 68 32 78)(23 69 33 79)(24 70 34 80)(25 71 35 61)(26 72 36 62)(27 73 37 63)(28 74 38 64)(29 75 39 65)(30 76 40 66)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 39)(2 38)(3 37)(4 36)(5 35)(6 34)(7 33)(8 32)(9 31)(10 30)(11 29)(12 28)(13 27)(14 26)(15 25)(16 24)(17 23)(18 22)(19 21)(20 40)(41 62)(42 61)(43 80)(44 79)(45 78)(46 77)(47 76)(48 75)(49 74)(50 73)(51 72)(52 71)(53 70)(54 69)(55 68)(56 67)(57 66)(58 65)(59 64)(60 63)
(1 6)(2 9 10 13)(3 12 19 20)(4 15 8 7)(5 18 17 14)(11 16)(21 33 29 37)(22 36 38 24)(23 39 27 31)(26 28 34 32)(30 40)(41 52 45 44)(42 55 54 51)(43 58)(46 47 50 59)(48 53)(49 56 57 60)(62 64 70 68)(63 67 79 75)(65 73 77 69)(66 76)(72 74 80 78)

G:=sub<Sym(80)| (1,58,11,48)(2,59,12,49)(3,60,13,50)(4,41,14,51)(5,42,15,52)(6,43,16,53)(7,44,17,54)(8,45,18,55)(9,46,19,56)(10,47,20,57)(21,67,31,77)(22,68,32,78)(23,69,33,79)(24,70,34,80)(25,71,35,61)(26,72,36,62)(27,73,37,63)(28,74,38,64)(29,75,39,65)(30,76,40,66), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)(20,40)(41,62)(42,61)(43,80)(44,79)(45,78)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63), (1,6)(2,9,10,13)(3,12,19,20)(4,15,8,7)(5,18,17,14)(11,16)(21,33,29,37)(22,36,38,24)(23,39,27,31)(26,28,34,32)(30,40)(41,52,45,44)(42,55,54,51)(43,58)(46,47,50,59)(48,53)(49,56,57,60)(62,64,70,68)(63,67,79,75)(65,73,77,69)(66,76)(72,74,80,78)>;

G:=Group( (1,58,11,48)(2,59,12,49)(3,60,13,50)(4,41,14,51)(5,42,15,52)(6,43,16,53)(7,44,17,54)(8,45,18,55)(9,46,19,56)(10,47,20,57)(21,67,31,77)(22,68,32,78)(23,69,33,79)(24,70,34,80)(25,71,35,61)(26,72,36,62)(27,73,37,63)(28,74,38,64)(29,75,39,65)(30,76,40,66), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)(20,40)(41,62)(42,61)(43,80)(44,79)(45,78)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63), (1,6)(2,9,10,13)(3,12,19,20)(4,15,8,7)(5,18,17,14)(11,16)(21,33,29,37)(22,36,38,24)(23,39,27,31)(26,28,34,32)(30,40)(41,52,45,44)(42,55,54,51)(43,58)(46,47,50,59)(48,53)(49,56,57,60)(62,64,70,68)(63,67,79,75)(65,73,77,69)(66,76)(72,74,80,78) );

G=PermutationGroup([[(1,58,11,48),(2,59,12,49),(3,60,13,50),(4,41,14,51),(5,42,15,52),(6,43,16,53),(7,44,17,54),(8,45,18,55),(9,46,19,56),(10,47,20,57),(21,67,31,77),(22,68,32,78),(23,69,33,79),(24,70,34,80),(25,71,35,61),(26,72,36,62),(27,73,37,63),(28,74,38,64),(29,75,39,65),(30,76,40,66)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,39),(2,38),(3,37),(4,36),(5,35),(6,34),(7,33),(8,32),(9,31),(10,30),(11,29),(12,28),(13,27),(14,26),(15,25),(16,24),(17,23),(18,22),(19,21),(20,40),(41,62),(42,61),(43,80),(44,79),(45,78),(46,77),(47,76),(48,75),(49,74),(50,73),(51,72),(52,71),(53,70),(54,69),(55,68),(56,67),(57,66),(58,65),(59,64),(60,63)], [(1,6),(2,9,10,13),(3,12,19,20),(4,15,8,7),(5,18,17,14),(11,16),(21,33,29,37),(22,36,38,24),(23,39,27,31),(26,28,34,32),(30,40),(41,52,45,44),(42,55,54,51),(43,58),(46,47,50,59),(48,53),(49,56,57,60),(62,64,70,68),(63,67,79,75),(65,73,77,69),(66,76),(72,74,80,78)]])

38 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H···4L 5 8A···8H10A10B10C10D20A20B20C20D20E
order1222222244444444···458···8101010102020202020
size11245510201124551020···20410···10488844888

38 irreducible representations

dim111111111122224444448
type+++++++++++++++
imageC1C2C2C2C2C2C4C4C4C4D4D4D4C4○D8F5C2×F5C2×F5C2×F5C22⋊F5C22⋊F5C4○D20⋊C4
kernelC4○D20⋊C4D20⋊C4Q8⋊F5C2×D5⋊C8D10.C23D5×C4○D4C4○D20D42D5Q82D5C5×C4○D4C4×D5C2×Dic5C22×D5D5C4○D4C2×C4D4Q8C4C22C1
# reps122111222221181111222

Matrix representation of C4○D20⋊C4 in GL6(𝔽41)

3200000
0320000
001000
000100
000010
000001
,
1160000
5400000
000100
000010
000001
0040404040
,
0280000
2200000
0004000
0040000
001111
0000040
,
32200000
090000
001000
000010
0040404040
000100

G:=sub<GL(6,GF(41))| [32,0,0,0,0,0,0,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,5,0,0,0,0,16,40,0,0,0,0,0,0,0,0,0,40,0,0,1,0,0,40,0,0,0,1,0,40,0,0,0,0,1,40],[0,22,0,0,0,0,28,0,0,0,0,0,0,0,0,40,1,0,0,0,40,0,1,0,0,0,0,0,1,0,0,0,0,0,1,40],[32,0,0,0,0,0,20,9,0,0,0,0,0,0,1,0,40,0,0,0,0,0,40,1,0,0,0,1,40,0,0,0,0,0,40,0] >;

C4○D20⋊C4 in GAP, Magma, Sage, TeX

C_4\circ D_{20}\rtimes C_4
% in TeX

G:=Group("C4oD20:C4");
// GroupNames label

G:=SmallGroup(320,1132);
// by ID

G=gap.SmallGroup(320,1132);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,422,387,297,136,438,102,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^2=d^4=1,b^10=a^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=a^2*b^9,d*b*d^-1=b^7,d*c*d^-1=a^2*b*c>;
// generators/relations

׿
×
𝔽