metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C4○D4⋊3F5, C4○D20⋊3C4, D4.9(C2×F5), Q8.9(C2×F5), D4⋊2D5⋊9C4, D20⋊C4⋊5C2, Q8⋊2D5⋊9C4, Q8⋊F5⋊5C2, D20.9(C2×C4), (C4×D5).56D4, D5.5(C4○D8), C5⋊(C23.24D4), C4⋊F5.10C22, C4.23(C22×F5), D10.101(C2×D4), C20.23(C22×C4), D5⋊C8.16C22, Dic10.9(C2×C4), Dic5.11(C2×D4), (C22×D5).73D4, (D4×D5).15C22, (C4×D5).45C23, C4.47(C22⋊F5), (Q8×D5).13C22, C20.47(C22⋊C4), (C2×Dic5).125D4, C22.6(C22⋊F5), D10.18(C22⋊C4), D10.C23⋊6C2, Dic5.50(C22⋊C4), (C2×D5⋊C8)⋊4C2, (C5×C4○D4)⋊3C4, (D5×C4○D4).7C2, (C5×D4).9(C2×C4), (C2×C4).90(C2×F5), (C5×Q8).9(C2×C4), (C2×C20).68(C2×C4), (C4×D5).29(C2×C4), C2.36(C2×C22⋊F5), C10.35(C2×C22⋊C4), (C2×C4×D5).212C22, (C2×C10).6(C22⋊C4), SmallGroup(320,1132)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C4×D5 — D5⋊C8 — C2×D5⋊C8 — C4○D20⋊C4 |
Generators and relations for C4○D20⋊C4
G = < a,b,c,d | a4=c2=d4=1, b10=a2, ab=ba, ac=ca, ad=da, cbc=a2b9, dbd-1=b7, dcd-1=a2bc >
Subgroups: 682 in 158 conjugacy classes, 50 normal (40 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D5, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C2×D4, C2×Q8, C4○D4, C4○D4, Dic5, Dic5, C20, C20, F5, D10, D10, C2×C10, C2×C10, D4⋊C4, Q8⋊C4, C42⋊C2, C22×C8, C2×C4○D4, C5⋊C8, Dic10, Dic10, C4×D5, C4×D5, D20, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C2×F5, C22×D5, C22×D5, C23.24D4, D5⋊C8, D5⋊C8, C4×F5, C4⋊F5, C2×C5⋊C8, C22⋊F5, C2×C4×D5, C2×C4×D5, C4○D20, C4○D20, D4×D5, D4×D5, D4⋊2D5, D4⋊2D5, Q8×D5, Q8⋊2D5, C5×C4○D4, D20⋊C4, Q8⋊F5, C2×D5⋊C8, D10.C23, D5×C4○D4, C4○D20⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, F5, C2×C22⋊C4, C4○D8, C2×F5, C23.24D4, C22⋊F5, C22×F5, C2×C22⋊F5, C4○D20⋊C4
(1 58 11 48)(2 59 12 49)(3 60 13 50)(4 41 14 51)(5 42 15 52)(6 43 16 53)(7 44 17 54)(8 45 18 55)(9 46 19 56)(10 47 20 57)(21 67 31 77)(22 68 32 78)(23 69 33 79)(24 70 34 80)(25 71 35 61)(26 72 36 62)(27 73 37 63)(28 74 38 64)(29 75 39 65)(30 76 40 66)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 39)(2 38)(3 37)(4 36)(5 35)(6 34)(7 33)(8 32)(9 31)(10 30)(11 29)(12 28)(13 27)(14 26)(15 25)(16 24)(17 23)(18 22)(19 21)(20 40)(41 62)(42 61)(43 80)(44 79)(45 78)(46 77)(47 76)(48 75)(49 74)(50 73)(51 72)(52 71)(53 70)(54 69)(55 68)(56 67)(57 66)(58 65)(59 64)(60 63)
(1 6)(2 9 10 13)(3 12 19 20)(4 15 8 7)(5 18 17 14)(11 16)(21 33 29 37)(22 36 38 24)(23 39 27 31)(26 28 34 32)(30 40)(41 52 45 44)(42 55 54 51)(43 58)(46 47 50 59)(48 53)(49 56 57 60)(62 64 70 68)(63 67 79 75)(65 73 77 69)(66 76)(72 74 80 78)
G:=sub<Sym(80)| (1,58,11,48)(2,59,12,49)(3,60,13,50)(4,41,14,51)(5,42,15,52)(6,43,16,53)(7,44,17,54)(8,45,18,55)(9,46,19,56)(10,47,20,57)(21,67,31,77)(22,68,32,78)(23,69,33,79)(24,70,34,80)(25,71,35,61)(26,72,36,62)(27,73,37,63)(28,74,38,64)(29,75,39,65)(30,76,40,66), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)(20,40)(41,62)(42,61)(43,80)(44,79)(45,78)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63), (1,6)(2,9,10,13)(3,12,19,20)(4,15,8,7)(5,18,17,14)(11,16)(21,33,29,37)(22,36,38,24)(23,39,27,31)(26,28,34,32)(30,40)(41,52,45,44)(42,55,54,51)(43,58)(46,47,50,59)(48,53)(49,56,57,60)(62,64,70,68)(63,67,79,75)(65,73,77,69)(66,76)(72,74,80,78)>;
G:=Group( (1,58,11,48)(2,59,12,49)(3,60,13,50)(4,41,14,51)(5,42,15,52)(6,43,16,53)(7,44,17,54)(8,45,18,55)(9,46,19,56)(10,47,20,57)(21,67,31,77)(22,68,32,78)(23,69,33,79)(24,70,34,80)(25,71,35,61)(26,72,36,62)(27,73,37,63)(28,74,38,64)(29,75,39,65)(30,76,40,66), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)(20,40)(41,62)(42,61)(43,80)(44,79)(45,78)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63), (1,6)(2,9,10,13)(3,12,19,20)(4,15,8,7)(5,18,17,14)(11,16)(21,33,29,37)(22,36,38,24)(23,39,27,31)(26,28,34,32)(30,40)(41,52,45,44)(42,55,54,51)(43,58)(46,47,50,59)(48,53)(49,56,57,60)(62,64,70,68)(63,67,79,75)(65,73,77,69)(66,76)(72,74,80,78) );
G=PermutationGroup([[(1,58,11,48),(2,59,12,49),(3,60,13,50),(4,41,14,51),(5,42,15,52),(6,43,16,53),(7,44,17,54),(8,45,18,55),(9,46,19,56),(10,47,20,57),(21,67,31,77),(22,68,32,78),(23,69,33,79),(24,70,34,80),(25,71,35,61),(26,72,36,62),(27,73,37,63),(28,74,38,64),(29,75,39,65),(30,76,40,66)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,39),(2,38),(3,37),(4,36),(5,35),(6,34),(7,33),(8,32),(9,31),(10,30),(11,29),(12,28),(13,27),(14,26),(15,25),(16,24),(17,23),(18,22),(19,21),(20,40),(41,62),(42,61),(43,80),(44,79),(45,78),(46,77),(47,76),(48,75),(49,74),(50,73),(51,72),(52,71),(53,70),(54,69),(55,68),(56,67),(57,66),(58,65),(59,64),(60,63)], [(1,6),(2,9,10,13),(3,12,19,20),(4,15,8,7),(5,18,17,14),(11,16),(21,33,29,37),(22,36,38,24),(23,39,27,31),(26,28,34,32),(30,40),(41,52,45,44),(42,55,54,51),(43,58),(46,47,50,59),(48,53),(49,56,57,60),(62,64,70,68),(63,67,79,75),(65,73,77,69),(66,76),(72,74,80,78)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | ··· | 4L | 5 | 8A | ··· | 8H | 10A | 10B | 10C | 10D | 20A | 20B | 20C | 20D | 20E |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 8 | ··· | 8 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 2 | 4 | 5 | 5 | 10 | 20 | 1 | 1 | 2 | 4 | 5 | 5 | 10 | 20 | ··· | 20 | 4 | 10 | ··· | 10 | 4 | 8 | 8 | 8 | 4 | 4 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | D4 | D4 | C4○D8 | F5 | C2×F5 | C2×F5 | C2×F5 | C22⋊F5 | C22⋊F5 | C4○D20⋊C4 |
kernel | C4○D20⋊C4 | D20⋊C4 | Q8⋊F5 | C2×D5⋊C8 | D10.C23 | D5×C4○D4 | C4○D20 | D4⋊2D5 | Q8⋊2D5 | C5×C4○D4 | C4×D5 | C2×Dic5 | C22×D5 | D5 | C4○D4 | C2×C4 | D4 | Q8 | C4 | C22 | C1 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 8 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
Matrix representation of C4○D20⋊C4 ►in GL6(𝔽41)
32 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 16 | 0 | 0 | 0 | 0 |
5 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 40 | 40 | 40 | 40 |
0 | 28 | 0 | 0 | 0 | 0 |
22 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 40 |
32 | 20 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 40 | 40 | 40 | 40 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(41))| [32,0,0,0,0,0,0,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,5,0,0,0,0,16,40,0,0,0,0,0,0,0,0,0,40,0,0,1,0,0,40,0,0,0,1,0,40,0,0,0,0,1,40],[0,22,0,0,0,0,28,0,0,0,0,0,0,0,0,40,1,0,0,0,40,0,1,0,0,0,0,0,1,0,0,0,0,0,1,40],[32,0,0,0,0,0,20,9,0,0,0,0,0,0,1,0,40,0,0,0,0,0,40,1,0,0,0,1,40,0,0,0,0,0,40,0] >;
C4○D20⋊C4 in GAP, Magma, Sage, TeX
C_4\circ D_{20}\rtimes C_4
% in TeX
G:=Group("C4oD20:C4");
// GroupNames label
G:=SmallGroup(320,1132);
// by ID
G=gap.SmallGroup(320,1132);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,422,387,297,136,438,102,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^2=d^4=1,b^10=a^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=a^2*b^9,d*b*d^-1=b^7,d*c*d^-1=a^2*b*c>;
// generators/relations