Extensions 1→N→G→Q→1 with N=C8 and Q=C52C8

Direct product G=N×Q with N=C8 and Q=C52C8

Semidirect products G=N:Q with N=C8 and Q=C52C8
extensionφ:Q→Aut NdρLabelID
C81(C52C8) = C405C8φ: C52C8/C20C2 ⊆ Aut C8320C8:1(C5:2C8)320,16
C82(C52C8) = C406C8φ: C52C8/C20C2 ⊆ Aut C8320C8:2(C5:2C8)320,15
C83(C52C8) = C408C8φ: C52C8/C20C2 ⊆ Aut C8320C8:3(C5:2C8)320,13

Non-split extensions G=N.Q with N=C8 and Q=C52C8
extensionφ:Q→Aut NdρLabelID
C8.1(C52C8) = C40.7C8φ: C52C8/C20C2 ⊆ Aut C8802C8.1(C5:2C8)320,21
C8.2(C52C8) = C40.10C8φ: C52C8/C20C2 ⊆ Aut C8320C8.2(C5:2C8)320,19
C8.3(C52C8) = C80.9C4φ: C52C8/C20C2 ⊆ Aut C81602C8.3(C5:2C8)320,57
C8.4(C52C8) = C52C64central extension (φ=1)3202C8.4(C5:2C8)320,1
C8.5(C52C8) = C4×C52C16central extension (φ=1)320C8.5(C5:2C8)320,18
C8.6(C52C8) = C2×C52C32central extension (φ=1)320C8.6(C5:2C8)320,56