Extensions 1→N→G→Q→1 with N=C2 and Q=D20.3C4

Direct product G=N×Q with N=C2 and Q=D20.3C4
dρLabelID
C2×D20.3C4160C2xD20.3C4320,1410


Non-split extensions G=N.Q with N=C2 and Q=D20.3C4
extensionφ:Q→Aut NdρLabelID
C2.1(D20.3C4) = C8×Dic10central extension (φ=1)320C2.1(D20.3C4)320,305
C2.2(D20.3C4) = C8×D20central extension (φ=1)160C2.2(D20.3C4)320,313
C2.3(D20.3C4) = D10.5C42central extension (φ=1)160C2.3(D20.3C4)320,316
C2.4(D20.3C4) = C20.42C42central extension (φ=1)160C2.4(D20.3C4)320,728
C2.5(D20.3C4) = C8×C5⋊D4central extension (φ=1)160C2.5(D20.3C4)320,736
C2.6(D20.3C4) = C4011Q8central stem extension (φ=1)320C2.6(D20.3C4)320,306
C2.7(D20.3C4) = C86D20central stem extension (φ=1)160C2.7(D20.3C4)320,315
C2.8(D20.3C4) = C42.243D10central stem extension (φ=1)160C2.8(D20.3C4)320,317
C2.9(D20.3C4) = C408C4⋊C2central stem extension (φ=1)160C2.9(D20.3C4)320,347
C2.10(D20.3C4) = C22⋊C8⋊D5central stem extension (φ=1)160C2.10(D20.3C4)320,354
C2.11(D20.3C4) = D104M4(2)central stem extension (φ=1)160C2.11(D20.3C4)320,355
C2.12(D20.3C4) = Dic52M4(2)central stem extension (φ=1)160C2.12(D20.3C4)320,356
C2.13(D20.3C4) = Dic5.5M4(2)central stem extension (φ=1)320C2.13(D20.3C4)320,455
C2.14(D20.3C4) = D105M4(2)central stem extension (φ=1)160C2.14(D20.3C4)320,463
C2.15(D20.3C4) = C42.30D10central stem extension (φ=1)160C2.15(D20.3C4)320,466
C2.16(D20.3C4) = C42.31D10central stem extension (φ=1)160C2.16(D20.3C4)320,467
C2.17(D20.3C4) = C20.65(C4⋊C4)central stem extension (φ=1)160C2.17(D20.3C4)320,729
C2.18(D20.3C4) = (C22×C8)⋊D5central stem extension (φ=1)160C2.18(D20.3C4)320,737
C2.19(D20.3C4) = C4032D4central stem extension (φ=1)160C2.19(D20.3C4)320,738

׿
×
𝔽