Copied to
clipboard

G = C408C4⋊C2order 320 = 26·5

12nd semidirect product of C408C4 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C408C412C2, C22⋊C8.8D5, (C8×Dic5)⋊14C2, (C2×C8).193D10, C4⋊Dic5.22C4, C23.11(C4×D5), C10.31(C8○D4), C20.8Q817C2, (C22×C4).74D10, C23.D5.10C4, C20.296(C4○D4), (C2×C40).169C22, (C2×C20).818C23, C20.55D4.2C2, C4.122(D42D5), C2.9(D20.2C4), C2.9(D20.3C4), (C22×C20).91C22, C55(C42.7C22), C10.41(C42⋊C2), (C4×Dic5).301C22, C23.21D10.2C2, C2.10(C23.11D10), (C2×C4).30(C4×D5), C22.102(C2×C4×D5), (C2×C20).211(C2×C4), (C5×C22⋊C8).11C2, (C2×Dic5).18(C2×C4), (C2×C4).760(C22×D5), (C2×C10).174(C22×C4), (C22×C10).104(C2×C4), (C2×C52C8).307C22, SmallGroup(320,347)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C408C4⋊C2
C1C5C10C20C2×C20C4×Dic5C23.21D10 — C408C4⋊C2
C5C2×C10 — C408C4⋊C2
C1C2×C4C22⋊C8

Generators and relations for C408C4⋊C2
 G = < a,b,c | a40=b4=c2=1, bab-1=a29, cac=ab2, cbc=a20b >

Subgroups: 254 in 96 conjugacy classes, 47 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, Dic5, C20, C20, C2×C10, C2×C10, C4×C8, C8⋊C4, C22⋊C8, C22⋊C8, C4⋊C8, C42⋊C2, C52C8, C40, C2×Dic5, C2×C20, C2×C20, C22×C10, C42.7C22, C2×C52C8, C4×Dic5, C4⋊Dic5, C23.D5, C2×C40, C22×C20, C8×Dic5, C20.8Q8, C408C4, C20.55D4, C5×C22⋊C8, C23.21D10, C408C4⋊C2
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, C22×C4, C4○D4, D10, C42⋊C2, C8○D4, C4×D5, C22×D5, C42.7C22, C2×C4×D5, D42D5, C23.11D10, D20.3C4, D20.2C4, C408C4⋊C2

Smallest permutation representation of C408C4⋊C2
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 77 160 106)(2 66 121 95)(3 55 122 84)(4 44 123 113)(5 73 124 102)(6 62 125 91)(7 51 126 120)(8 80 127 109)(9 69 128 98)(10 58 129 87)(11 47 130 116)(12 76 131 105)(13 65 132 94)(14 54 133 83)(15 43 134 112)(16 72 135 101)(17 61 136 90)(18 50 137 119)(19 79 138 108)(20 68 139 97)(21 57 140 86)(22 46 141 115)(23 75 142 104)(24 64 143 93)(25 53 144 82)(26 42 145 111)(27 71 146 100)(28 60 147 89)(29 49 148 118)(30 78 149 107)(31 67 150 96)(32 56 151 85)(33 45 152 114)(34 74 153 103)(35 63 154 92)(36 52 155 81)(37 41 156 110)(38 70 157 99)(39 59 158 88)(40 48 159 117)
(2 121)(4 123)(6 125)(8 127)(10 129)(12 131)(14 133)(16 135)(18 137)(20 139)(22 141)(24 143)(26 145)(28 147)(30 149)(32 151)(34 153)(36 155)(38 157)(40 159)(41 61)(42 91)(43 63)(44 93)(45 65)(46 95)(47 67)(48 97)(49 69)(50 99)(51 71)(52 101)(53 73)(54 103)(55 75)(56 105)(57 77)(58 107)(59 79)(60 109)(62 111)(64 113)(66 115)(68 117)(70 119)(72 81)(74 83)(76 85)(78 87)(80 89)(82 102)(84 104)(86 106)(88 108)(90 110)(92 112)(94 114)(96 116)(98 118)(100 120)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,77,160,106)(2,66,121,95)(3,55,122,84)(4,44,123,113)(5,73,124,102)(6,62,125,91)(7,51,126,120)(8,80,127,109)(9,69,128,98)(10,58,129,87)(11,47,130,116)(12,76,131,105)(13,65,132,94)(14,54,133,83)(15,43,134,112)(16,72,135,101)(17,61,136,90)(18,50,137,119)(19,79,138,108)(20,68,139,97)(21,57,140,86)(22,46,141,115)(23,75,142,104)(24,64,143,93)(25,53,144,82)(26,42,145,111)(27,71,146,100)(28,60,147,89)(29,49,148,118)(30,78,149,107)(31,67,150,96)(32,56,151,85)(33,45,152,114)(34,74,153,103)(35,63,154,92)(36,52,155,81)(37,41,156,110)(38,70,157,99)(39,59,158,88)(40,48,159,117), (2,121)(4,123)(6,125)(8,127)(10,129)(12,131)(14,133)(16,135)(18,137)(20,139)(22,141)(24,143)(26,145)(28,147)(30,149)(32,151)(34,153)(36,155)(38,157)(40,159)(41,61)(42,91)(43,63)(44,93)(45,65)(46,95)(47,67)(48,97)(49,69)(50,99)(51,71)(52,101)(53,73)(54,103)(55,75)(56,105)(57,77)(58,107)(59,79)(60,109)(62,111)(64,113)(66,115)(68,117)(70,119)(72,81)(74,83)(76,85)(78,87)(80,89)(82,102)(84,104)(86,106)(88,108)(90,110)(92,112)(94,114)(96,116)(98,118)(100,120)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,77,160,106)(2,66,121,95)(3,55,122,84)(4,44,123,113)(5,73,124,102)(6,62,125,91)(7,51,126,120)(8,80,127,109)(9,69,128,98)(10,58,129,87)(11,47,130,116)(12,76,131,105)(13,65,132,94)(14,54,133,83)(15,43,134,112)(16,72,135,101)(17,61,136,90)(18,50,137,119)(19,79,138,108)(20,68,139,97)(21,57,140,86)(22,46,141,115)(23,75,142,104)(24,64,143,93)(25,53,144,82)(26,42,145,111)(27,71,146,100)(28,60,147,89)(29,49,148,118)(30,78,149,107)(31,67,150,96)(32,56,151,85)(33,45,152,114)(34,74,153,103)(35,63,154,92)(36,52,155,81)(37,41,156,110)(38,70,157,99)(39,59,158,88)(40,48,159,117), (2,121)(4,123)(6,125)(8,127)(10,129)(12,131)(14,133)(16,135)(18,137)(20,139)(22,141)(24,143)(26,145)(28,147)(30,149)(32,151)(34,153)(36,155)(38,157)(40,159)(41,61)(42,91)(43,63)(44,93)(45,65)(46,95)(47,67)(48,97)(49,69)(50,99)(51,71)(52,101)(53,73)(54,103)(55,75)(56,105)(57,77)(58,107)(59,79)(60,109)(62,111)(64,113)(66,115)(68,117)(70,119)(72,81)(74,83)(76,85)(78,87)(80,89)(82,102)(84,104)(86,106)(88,108)(90,110)(92,112)(94,114)(96,116)(98,118)(100,120) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,77,160,106),(2,66,121,95),(3,55,122,84),(4,44,123,113),(5,73,124,102),(6,62,125,91),(7,51,126,120),(8,80,127,109),(9,69,128,98),(10,58,129,87),(11,47,130,116),(12,76,131,105),(13,65,132,94),(14,54,133,83),(15,43,134,112),(16,72,135,101),(17,61,136,90),(18,50,137,119),(19,79,138,108),(20,68,139,97),(21,57,140,86),(22,46,141,115),(23,75,142,104),(24,64,143,93),(25,53,144,82),(26,42,145,111),(27,71,146,100),(28,60,147,89),(29,49,148,118),(30,78,149,107),(31,67,150,96),(32,56,151,85),(33,45,152,114),(34,74,153,103),(35,63,154,92),(36,52,155,81),(37,41,156,110),(38,70,157,99),(39,59,158,88),(40,48,159,117)], [(2,121),(4,123),(6,125),(8,127),(10,129),(12,131),(14,133),(16,135),(18,137),(20,139),(22,141),(24,143),(26,145),(28,147),(30,149),(32,151),(34,153),(36,155),(38,157),(40,159),(41,61),(42,91),(43,63),(44,93),(45,65),(46,95),(47,67),(48,97),(49,69),(50,99),(51,71),(52,101),(53,73),(54,103),(55,75),(56,105),(57,77),(58,107),(59,79),(60,109),(62,111),(64,113),(66,115),(68,117),(70,119),(72,81),(74,83),(76,85),(78,87),(80,89),(82,102),(84,104),(86,106),(88,108),(90,110),(92,112),(94,114),(96,116),(98,118),(100,120)]])

68 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I4J4K5A5B8A8B8C8D8E8F8G8H8I8J8K8L10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222444444444445588888888888810···101010101020···202020202040···40
size1111411114101010102020222222441010101020202···244442···244444···4

68 irreducible representations

dim1111111112222222244
type++++++++++-
imageC1C2C2C2C2C2C2C4C4D5C4○D4D10D10C8○D4C4×D5C4×D5D20.3C4D42D5D20.2C4
kernelC408C4⋊C2C8×Dic5C20.8Q8C408C4C20.55D4C5×C22⋊C8C23.21D10C4⋊Dic5C23.D5C22⋊C8C20C2×C8C22×C4C10C2×C4C23C2C4C2
# reps11211114424428441644

Matrix representation of C408C4⋊C2 in GL4(𝔽41) generated by

17000
241500
00920
003732
,
11700
04000
0090
0009
,
1000
244000
0010
003640
G:=sub<GL(4,GF(41))| [17,24,0,0,0,15,0,0,0,0,9,37,0,0,20,32],[1,0,0,0,17,40,0,0,0,0,9,0,0,0,0,9],[1,24,0,0,0,40,0,0,0,0,1,36,0,0,0,40] >;

C408C4⋊C2 in GAP, Magma, Sage, TeX

C_{40}\rtimes_8C_4\rtimes C_2
% in TeX

G:=Group("C40:8C4:C2");
// GroupNames label

G:=SmallGroup(320,347);
// by ID

G=gap.SmallGroup(320,347);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,477,219,58,136,12550]);
// Polycyclic

G:=Group<a,b,c|a^40=b^4=c^2=1,b*a*b^-1=a^29,c*a*c=a*b^2,c*b*c=a^20*b>;
// generators/relations

׿
×
𝔽