Copied to
clipboard

G = C8×C5⋊D4order 320 = 26·5

Direct product of C8 and C5⋊D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C8×C5⋊D4, C4031D4, C58(C8×D4), D106(C2×C8), (C22×C8)⋊2D5, C222(C8×D5), Dic53(C2×C8), (C22×C40)⋊15C2, (C8×Dic5)⋊26C2, C10.107(C4×D4), (C2×C8).345D10, C20.435(C2×D4), D101C842C2, C23.33(C4×D5), C10.41(C8○D4), C10.44(C22×C8), C20.8Q843C2, C23.D5.22C4, D10⋊C4.30C4, C20.251(C4○D4), C4.135(C4○D20), C20.55D432C2, (C2×C20).859C23, (C2×C40).353C22, C10.D4.30C4, (C22×C4).401D10, C2.5(D20.3C4), (C22×C20).560C22, (C4×Dic5).313C22, (D5×C2×C8)⋊24C2, C2.20(D5×C2×C8), C2.3(C4×C5⋊D4), (C2×C10)⋊11(C2×C8), (C2×C4).93(C4×D5), C22.61(C2×C4×D5), (C2×C5⋊D4).27C4, (C4×C5⋊D4).19C2, C4.125(C2×C5⋊D4), (C2×C20).382(C2×C4), (C2×C4×D5).353C22, (C22×D5).80(C2×C4), (C2×C4).801(C22×D5), (C22×C10).162(C2×C4), (C2×C10).230(C22×C4), (C2×C52C8).328C22, (C2×Dic5).111(C2×C4), SmallGroup(320,736)

Series: Derived Chief Lower central Upper central

C1C10 — C8×C5⋊D4
C1C5C10C20C2×C20C2×C4×D5C4×C5⋊D4 — C8×C5⋊D4
C5C10 — C8×C5⋊D4
C1C2×C8C22×C8

Generators and relations for C8×C5⋊D4
 G = < a,b,c,d | a8=b5=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 382 in 134 conjugacy classes, 63 normal (47 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2×D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C2×C10, C4×C8, C22⋊C8, C4⋊C8, C4×D4, C22×C8, C22×C8, C52C8, C40, C40, C4×D5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, C8×D4, C8×D5, C2×C52C8, C4×Dic5, C10.D4, D10⋊C4, C23.D5, C2×C40, C2×C40, C2×C4×D5, C2×C5⋊D4, C22×C20, C8×Dic5, C20.8Q8, D101C8, C20.55D4, D5×C2×C8, C4×C5⋊D4, C22×C40, C8×C5⋊D4
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, D5, C2×C8, C22×C4, C2×D4, C4○D4, D10, C4×D4, C22×C8, C8○D4, C4×D5, C5⋊D4, C22×D5, C8×D4, C8×D5, C2×C4×D5, C4○D20, C2×C5⋊D4, D5×C2×C8, D20.3C4, C4×C5⋊D4, C8×C5⋊D4

Smallest permutation representation of C8×C5⋊D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 12 81 107 54)(2 13 82 108 55)(3 14 83 109 56)(4 15 84 110 49)(5 16 85 111 50)(6 9 86 112 51)(7 10 87 105 52)(8 11 88 106 53)(17 48 141 156 104)(18 41 142 157 97)(19 42 143 158 98)(20 43 144 159 99)(21 44 137 160 100)(22 45 138 153 101)(23 46 139 154 102)(24 47 140 155 103)(25 114 129 69 62)(26 115 130 70 63)(27 116 131 71 64)(28 117 132 72 57)(29 118 133 65 58)(30 119 134 66 59)(31 120 135 67 60)(32 113 136 68 61)(33 78 89 124 150)(34 79 90 125 151)(35 80 91 126 152)(36 73 92 127 145)(37 74 93 128 146)(38 75 94 121 147)(39 76 95 122 148)(40 77 96 123 149)
(1 153 121 62)(2 154 122 63)(3 155 123 64)(4 156 124 57)(5 157 125 58)(6 158 126 59)(7 159 127 60)(8 160 128 61)(9 143 152 66)(10 144 145 67)(11 137 146 68)(12 138 147 69)(13 139 148 70)(14 140 149 71)(15 141 150 72)(16 142 151 65)(17 78 117 110)(18 79 118 111)(19 80 119 112)(20 73 120 105)(21 74 113 106)(22 75 114 107)(23 76 115 108)(24 77 116 109)(25 54 101 94)(26 55 102 95)(27 56 103 96)(28 49 104 89)(29 50 97 90)(30 51 98 91)(31 52 99 92)(32 53 100 93)(33 132 84 48)(34 133 85 41)(35 134 86 42)(36 135 87 43)(37 136 88 44)(38 129 81 45)(39 130 82 46)(40 131 83 47)
(9 51)(10 52)(11 53)(12 54)(13 55)(14 56)(15 49)(16 50)(17 132)(18 133)(19 134)(20 135)(21 136)(22 129)(23 130)(24 131)(25 138)(26 139)(27 140)(28 141)(29 142)(30 143)(31 144)(32 137)(33 78)(34 79)(35 80)(36 73)(37 74)(38 75)(39 76)(40 77)(41 118)(42 119)(43 120)(44 113)(45 114)(46 115)(47 116)(48 117)(57 156)(58 157)(59 158)(60 159)(61 160)(62 153)(63 154)(64 155)(65 97)(66 98)(67 99)(68 100)(69 101)(70 102)(71 103)(72 104)(81 107)(82 108)(83 109)(84 110)(85 111)(86 112)(87 105)(88 106)(89 150)(90 151)(91 152)(92 145)(93 146)(94 147)(95 148)(96 149)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,12,81,107,54)(2,13,82,108,55)(3,14,83,109,56)(4,15,84,110,49)(5,16,85,111,50)(6,9,86,112,51)(7,10,87,105,52)(8,11,88,106,53)(17,48,141,156,104)(18,41,142,157,97)(19,42,143,158,98)(20,43,144,159,99)(21,44,137,160,100)(22,45,138,153,101)(23,46,139,154,102)(24,47,140,155,103)(25,114,129,69,62)(26,115,130,70,63)(27,116,131,71,64)(28,117,132,72,57)(29,118,133,65,58)(30,119,134,66,59)(31,120,135,67,60)(32,113,136,68,61)(33,78,89,124,150)(34,79,90,125,151)(35,80,91,126,152)(36,73,92,127,145)(37,74,93,128,146)(38,75,94,121,147)(39,76,95,122,148)(40,77,96,123,149), (1,153,121,62)(2,154,122,63)(3,155,123,64)(4,156,124,57)(5,157,125,58)(6,158,126,59)(7,159,127,60)(8,160,128,61)(9,143,152,66)(10,144,145,67)(11,137,146,68)(12,138,147,69)(13,139,148,70)(14,140,149,71)(15,141,150,72)(16,142,151,65)(17,78,117,110)(18,79,118,111)(19,80,119,112)(20,73,120,105)(21,74,113,106)(22,75,114,107)(23,76,115,108)(24,77,116,109)(25,54,101,94)(26,55,102,95)(27,56,103,96)(28,49,104,89)(29,50,97,90)(30,51,98,91)(31,52,99,92)(32,53,100,93)(33,132,84,48)(34,133,85,41)(35,134,86,42)(36,135,87,43)(37,136,88,44)(38,129,81,45)(39,130,82,46)(40,131,83,47), (9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,49)(16,50)(17,132)(18,133)(19,134)(20,135)(21,136)(22,129)(23,130)(24,131)(25,138)(26,139)(27,140)(28,141)(29,142)(30,143)(31,144)(32,137)(33,78)(34,79)(35,80)(36,73)(37,74)(38,75)(39,76)(40,77)(41,118)(42,119)(43,120)(44,113)(45,114)(46,115)(47,116)(48,117)(57,156)(58,157)(59,158)(60,159)(61,160)(62,153)(63,154)(64,155)(65,97)(66,98)(67,99)(68,100)(69,101)(70,102)(71,103)(72,104)(81,107)(82,108)(83,109)(84,110)(85,111)(86,112)(87,105)(88,106)(89,150)(90,151)(91,152)(92,145)(93,146)(94,147)(95,148)(96,149)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,12,81,107,54)(2,13,82,108,55)(3,14,83,109,56)(4,15,84,110,49)(5,16,85,111,50)(6,9,86,112,51)(7,10,87,105,52)(8,11,88,106,53)(17,48,141,156,104)(18,41,142,157,97)(19,42,143,158,98)(20,43,144,159,99)(21,44,137,160,100)(22,45,138,153,101)(23,46,139,154,102)(24,47,140,155,103)(25,114,129,69,62)(26,115,130,70,63)(27,116,131,71,64)(28,117,132,72,57)(29,118,133,65,58)(30,119,134,66,59)(31,120,135,67,60)(32,113,136,68,61)(33,78,89,124,150)(34,79,90,125,151)(35,80,91,126,152)(36,73,92,127,145)(37,74,93,128,146)(38,75,94,121,147)(39,76,95,122,148)(40,77,96,123,149), (1,153,121,62)(2,154,122,63)(3,155,123,64)(4,156,124,57)(5,157,125,58)(6,158,126,59)(7,159,127,60)(8,160,128,61)(9,143,152,66)(10,144,145,67)(11,137,146,68)(12,138,147,69)(13,139,148,70)(14,140,149,71)(15,141,150,72)(16,142,151,65)(17,78,117,110)(18,79,118,111)(19,80,119,112)(20,73,120,105)(21,74,113,106)(22,75,114,107)(23,76,115,108)(24,77,116,109)(25,54,101,94)(26,55,102,95)(27,56,103,96)(28,49,104,89)(29,50,97,90)(30,51,98,91)(31,52,99,92)(32,53,100,93)(33,132,84,48)(34,133,85,41)(35,134,86,42)(36,135,87,43)(37,136,88,44)(38,129,81,45)(39,130,82,46)(40,131,83,47), (9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,49)(16,50)(17,132)(18,133)(19,134)(20,135)(21,136)(22,129)(23,130)(24,131)(25,138)(26,139)(27,140)(28,141)(29,142)(30,143)(31,144)(32,137)(33,78)(34,79)(35,80)(36,73)(37,74)(38,75)(39,76)(40,77)(41,118)(42,119)(43,120)(44,113)(45,114)(46,115)(47,116)(48,117)(57,156)(58,157)(59,158)(60,159)(61,160)(62,153)(63,154)(64,155)(65,97)(66,98)(67,99)(68,100)(69,101)(70,102)(71,103)(72,104)(81,107)(82,108)(83,109)(84,110)(85,111)(86,112)(87,105)(88,106)(89,150)(90,151)(91,152)(92,145)(93,146)(94,147)(95,148)(96,149) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,12,81,107,54),(2,13,82,108,55),(3,14,83,109,56),(4,15,84,110,49),(5,16,85,111,50),(6,9,86,112,51),(7,10,87,105,52),(8,11,88,106,53),(17,48,141,156,104),(18,41,142,157,97),(19,42,143,158,98),(20,43,144,159,99),(21,44,137,160,100),(22,45,138,153,101),(23,46,139,154,102),(24,47,140,155,103),(25,114,129,69,62),(26,115,130,70,63),(27,116,131,71,64),(28,117,132,72,57),(29,118,133,65,58),(30,119,134,66,59),(31,120,135,67,60),(32,113,136,68,61),(33,78,89,124,150),(34,79,90,125,151),(35,80,91,126,152),(36,73,92,127,145),(37,74,93,128,146),(38,75,94,121,147),(39,76,95,122,148),(40,77,96,123,149)], [(1,153,121,62),(2,154,122,63),(3,155,123,64),(4,156,124,57),(5,157,125,58),(6,158,126,59),(7,159,127,60),(8,160,128,61),(9,143,152,66),(10,144,145,67),(11,137,146,68),(12,138,147,69),(13,139,148,70),(14,140,149,71),(15,141,150,72),(16,142,151,65),(17,78,117,110),(18,79,118,111),(19,80,119,112),(20,73,120,105),(21,74,113,106),(22,75,114,107),(23,76,115,108),(24,77,116,109),(25,54,101,94),(26,55,102,95),(27,56,103,96),(28,49,104,89),(29,50,97,90),(30,51,98,91),(31,52,99,92),(32,53,100,93),(33,132,84,48),(34,133,85,41),(35,134,86,42),(36,135,87,43),(37,136,88,44),(38,129,81,45),(39,130,82,46),(40,131,83,47)], [(9,51),(10,52),(11,53),(12,54),(13,55),(14,56),(15,49),(16,50),(17,132),(18,133),(19,134),(20,135),(21,136),(22,129),(23,130),(24,131),(25,138),(26,139),(27,140),(28,141),(29,142),(30,143),(31,144),(32,137),(33,78),(34,79),(35,80),(36,73),(37,74),(38,75),(39,76),(40,77),(41,118),(42,119),(43,120),(44,113),(45,114),(46,115),(47,116),(48,117),(57,156),(58,157),(59,158),(60,159),(61,160),(62,153),(63,154),(64,155),(65,97),(66,98),(67,99),(68,100),(69,101),(70,102),(71,103),(72,104),(81,107),(82,108),(83,109),(84,110),(85,111),(86,112),(87,105),(88,106),(89,150),(90,151),(91,152),(92,145),(93,146),(94,147),(95,148),(96,149)]])

104 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G···4L5A5B8A···8H8I8J8K8L8M···8T10A···10N20A···20P40A···40AF
order122222224444444···4558···888888···810···1020···2040···40
size111122101011112210···10221···1222210···102···22···22···2

104 irreducible representations

dim1111111111111222222222222
type++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4C8D4D5C4○D4D10D10C8○D4C5⋊D4C4×D5C4×D5C4○D20C8×D5D20.3C4
kernelC8×C5⋊D4C8×Dic5C20.8Q8D101C8C20.55D4D5×C2×C8C4×C5⋊D4C22×C40C10.D4D10⋊C4C23.D5C2×C5⋊D4C5⋊D4C40C22×C8C20C2×C8C22×C4C10C8C2×C4C23C4C22C2
# reps1111111122221622242484481616

Matrix representation of C8×C5⋊D4 in GL3(𝔽41) generated by

300
0380
0038
,
100
0740
0840
,
100
0318
0438
,
4000
0341
0347
G:=sub<GL(3,GF(41))| [3,0,0,0,38,0,0,0,38],[1,0,0,0,7,8,0,40,40],[1,0,0,0,3,4,0,18,38],[40,0,0,0,34,34,0,1,7] >;

C8×C5⋊D4 in GAP, Magma, Sage, TeX

C_8\times C_5\rtimes D_4
% in TeX

G:=Group("C8xC5:D4");
// GroupNames label

G:=SmallGroup(320,736);
// by ID

G=gap.SmallGroup(320,736);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,58,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^5=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽