# Extensions 1→N→G→Q→1 with N=C4 and Q=C5×Q16

Direct product G=N×Q with N=C4 and Q=C5×Q16
dρLabelID
Q16×C20320Q16xC20320,940

Semidirect products G=N:Q with N=C4 and Q=C5×Q16
extensionφ:Q→Aut NdρLabelID
C41(C5×Q16) = C5×C4⋊Q16φ: C5×Q16/C40C2 ⊆ Aut C4320C4:1(C5xQ16)320,995
C42(C5×Q16) = C5×C42Q16φ: C5×Q16/C5×Q8C2 ⊆ Aut C4320C4:2(C5xQ16)320,963

Non-split extensions G=N.Q with N=C4 and Q=C5×Q16
extensionφ:Q→Aut NdρLabelID
C4.1(C5×Q16) = C5×C163C4φ: C5×Q16/C40C2 ⊆ Aut C4320C4.1(C5xQ16)320,171
C4.2(C5×Q16) = C5×C164C4φ: C5×Q16/C40C2 ⊆ Aut C4320C4.2(C5xQ16)320,172
C4.3(C5×Q16) = C5×C4.SD16φ: C5×Q16/C40C2 ⊆ Aut C4320C4.3(C5xQ16)320,988
C4.4(C5×Q16) = C5×C82Q8φ: C5×Q16/C40C2 ⊆ Aut C4320C4.4(C5xQ16)320,1001
C4.5(C5×Q16) = C5×C4.10D8φ: C5×Q16/C5×Q8C2 ⊆ Aut C4320C4.5(C5xQ16)320,137
C4.6(C5×Q16) = C5×C4.6Q16φ: C5×Q16/C5×Q8C2 ⊆ Aut C4320C4.6(C5xQ16)320,138
C4.7(C5×Q16) = C5×C4.Q16φ: C5×Q16/C5×Q8C2 ⊆ Aut C4320C4.7(C5xQ16)320,978
C4.8(C5×Q16) = C5×Q8⋊C8central extension (φ=1)320C4.8(C5xQ16)320,131
C4.9(C5×Q16) = C5×C81C8central extension (φ=1)320C4.9(C5xQ16)320,140

׿
×
𝔽