Extensions 1→N→G→Q→1 with N=C4 and Q=C4.F5

Direct product G=N×Q with N=C4 and Q=C4.F5
dρLabelID
C4×C4.F5160C4xC4.F5320,1015

Semidirect products G=N:Q with N=C4 and Q=C4.F5
extensionφ:Q→Aut NdρLabelID
C41(C4.F5) = C20⋊M4(2)φ: C4.F5/C5⋊C8C2 ⊆ Aut C4160C4:1(C4.F5)320,1043
C42(C4.F5) = C203M4(2)φ: C4.F5/C4×D5C2 ⊆ Aut C4160C4:2(C4.F5)320,1019

Non-split extensions G=N.Q with N=C4 and Q=C4.F5
extensionφ:Q→Aut NdρLabelID
C4.1(C4.F5) = D20⋊C8φ: C4.F5/C5⋊C8C2 ⊆ Aut C4160C4.1(C4.F5)320,209
C4.2(C4.F5) = Dic101C8φ: C4.F5/C5⋊C8C2 ⊆ Aut C4320C4.2(C4.F5)320,210
C4.3(C4.F5) = C20.M4(2)φ: C4.F5/C5⋊C8C2 ⊆ Aut C4320C4.3(C4.F5)320,1047
C4.4(C4.F5) = C42.3F5φ: C4.F5/C4×D5C2 ⊆ Aut C4804C4.4(C4.F5)320,198
C4.5(C4.F5) = C402C8φ: C4.F5/C4×D5C2 ⊆ Aut C4320C4.5(C4.F5)320,219
C4.6(C4.F5) = C401C8φ: C4.F5/C4×D5C2 ⊆ Aut C4320C4.6(C4.F5)320,220
C4.7(C4.F5) = C20.10M4(2)φ: C4.F5/C4×D5C2 ⊆ Aut C4804C4.7(C4.F5)320,229
C4.8(C4.F5) = C42.15F5φ: C4.F5/C4×D5C2 ⊆ Aut C4160C4.8(C4.F5)320,1021
C4.9(C4.F5) = C20⋊C16central extension (φ=1)320C4.9(C4.F5)320,196
C4.10(C4.F5) = C20.31M4(2)central extension (φ=1)320C4.10(C4.F5)320,218
C4.11(C4.F5) = D10⋊C16central extension (φ=1)160C4.11(C4.F5)320,225
C4.12(C4.F5) = C42.12F5central extension (φ=1)160C4.12(C4.F5)320,1018

׿
×
𝔽