metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C5⋊C8, C2.F5, C10.C4, Dic5.2C2, SmallGroup(40,3)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — C5⋊C8 |
Generators and relations for C5⋊C8
G = < a,b | a5=b8=1, bab-1=a3 >
Character table of C5⋊C8
class | 1 | 2 | 4A | 4B | 5 | 8A | 8B | 8C | 8D | 10 | |
size | 1 | 1 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | i | -i | i | -i | 1 | linear of order 4 |
ρ4 | 1 | 1 | -1 | -1 | 1 | -i | i | -i | i | 1 | linear of order 4 |
ρ5 | 1 | -1 | i | -i | 1 | ζ85 | ζ87 | ζ8 | ζ83 | -1 | linear of order 8 |
ρ6 | 1 | -1 | -i | i | 1 | ζ83 | ζ8 | ζ87 | ζ85 | -1 | linear of order 8 |
ρ7 | 1 | -1 | i | -i | 1 | ζ8 | ζ83 | ζ85 | ζ87 | -1 | linear of order 8 |
ρ8 | 1 | -1 | -i | i | 1 | ζ87 | ζ85 | ζ83 | ζ8 | -1 | linear of order 8 |
ρ9 | 4 | 4 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | orthogonal lifted from F5 |
ρ10 | 4 | -4 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | symplectic faithful, Schur index 2 |
(1 35 27 20 11)(2 21 36 12 28)(3 13 22 29 37)(4 30 14 38 23)(5 39 31 24 15)(6 17 40 16 32)(7 9 18 25 33)(8 26 10 34 19)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
G:=sub<Sym(40)| (1,35,27,20,11)(2,21,36,12,28)(3,13,22,29,37)(4,30,14,38,23)(5,39,31,24,15)(6,17,40,16,32)(7,9,18,25,33)(8,26,10,34,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)>;
G:=Group( (1,35,27,20,11)(2,21,36,12,28)(3,13,22,29,37)(4,30,14,38,23)(5,39,31,24,15)(6,17,40,16,32)(7,9,18,25,33)(8,26,10,34,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40) );
G=PermutationGroup([[(1,35,27,20,11),(2,21,36,12,28),(3,13,22,29,37),(4,30,14,38,23),(5,39,31,24,15),(6,17,40,16,32),(7,9,18,25,33),(8,26,10,34,19)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)]])
C5⋊C8 is a maximal subgroup of
D5⋊C8 C4.F5 C22.F5 C15⋊C8 C25⋊C8 C52⋊3C8 C52⋊4C8 C52⋊5C8 CSU2(𝔽5) C2.S5 C35⋊C8 (C3×C6).F5 C5⋊F9 C55⋊C8
C5⋊C8 is a maximal quotient of
C5⋊C16 C15⋊C8 C25⋊C8 C52⋊3C8 C52⋊4C8 C52⋊5C8 C35⋊C8 (C3×C6).F5 C5⋊F9 C55⋊C8
Matrix representation of C5⋊C8 ►in GL4(𝔽3) generated by
0 | 2 | 1 | 2 |
1 | 1 | 1 | 1 |
1 | 2 | 2 | 0 |
0 | 2 | 0 | 2 |
2 | 0 | 2 | 0 |
0 | 1 | 0 | 2 |
2 | 0 | 0 | 0 |
2 | 2 | 0 | 0 |
G:=sub<GL(4,GF(3))| [0,1,1,0,2,1,2,2,1,1,2,0,2,1,0,2],[2,0,2,2,0,1,0,2,2,0,0,0,0,2,0,0] >;
C5⋊C8 in GAP, Magma, Sage, TeX
C_5\rtimes C_8
% in TeX
G:=Group("C5:C8");
// GroupNames label
G:=SmallGroup(40,3);
// by ID
G=gap.SmallGroup(40,3);
# by ID
G:=PCGroup([4,-2,-2,-2,-5,8,21,259,263]);
// Polycyclic
G:=Group<a,b|a^5=b^8=1,b*a*b^-1=a^3>;
// generators/relations
Export
Subgroup lattice of C5⋊C8 in TeX
Character table of C5⋊C8 in TeX