Extensions 1→N→G→Q→1 with N=D4xD5 and Q=C4

Direct product G=NxQ with N=D4xD5 and Q=C4
dρLabelID
C4xD4xD580C4xD4xD5320,1216

Semidirect products G=N:Q with N=D4xD5 and Q=C4
extensionφ:Q→Out NdρLabelID
(D4xD5):1C4 = D5xD4:C4φ: C4/C2C2 ⊆ Out D4xD580(D4xD5):1C4320,396
(D4xD5):2C4 = (D4xD5):C4φ: C4/C2C2 ⊆ Out D4xD580(D4xD5):2C4320,397
(D4xD5):3C4 = D5xC4wrC2φ: C4/C2C2 ⊆ Out D4xD5404(D4xD5):3C4320,447
(D4xD5):4C4 = C42:D10φ: C4/C2C2 ⊆ Out D4xD5804(D4xD5):4C4320,448
(D4xD5):5C4 = C42:11D10φ: C4/C2C2 ⊆ Out D4xD580(D4xD5):5C4320,1217
(D4xD5):6C4 = C2xD20:C4φ: C4/C2C2 ⊆ Out D4xD580(D4xD5):6C4320,1104
(D4xD5):7C4 = (D4xC10):C4φ: C4/C2C2 ⊆ Out D4xD5408+(D4xD5):7C4320,1105
(D4xD5):8C4 = D5:C4wrC2φ: C4/C2C2 ⊆ Out D4xD5408(D4xD5):8C4320,1130
(D4xD5):9C4 = D4:F5:C2φ: C4/C2C2 ⊆ Out D4xD5808(D4xD5):9C4320,1133
(D4xD5):10C4 = C2xD4xF5φ: C4/C2C2 ⊆ Out D4xD540(D4xD5):10C4320,1595
(D4xD5):11C4 = D10.C24φ: C4/C2C2 ⊆ Out D4xD5408+(D4xD5):11C4320,1596

Non-split extensions G=N.Q with N=D4xD5 and Q=C4
extensionφ:Q→Out NdρLabelID
(D4xD5).1C4 = C20.72C24φ: C4/C2C2 ⊆ Out D4xD5804(D4xD5).1C4320,1422
(D4xD5).2C4 = Dic5.21C24φ: C4/C2C2 ⊆ Out D4xD5808(D4xD5).2C4320,1601
(D4xD5).3C4 = Dic5.22C24φ: C4/C2C2 ⊆ Out D4xD5808(D4xD5).3C4320,1602
(D4xD5).4C4 = D5xC8oD4φ: trivial image804(D4xD5).4C4320,1421

׿
x
:
Z
F
o
wr
Q
<