Extensions 1→N→G→Q→1 with N=D4×D5 and Q=C4

Direct product G=N×Q with N=D4×D5 and Q=C4
dρLabelID
C4×D4×D580C4xD4xD5320,1216

Semidirect products G=N:Q with N=D4×D5 and Q=C4
extensionφ:Q→Out NdρLabelID
(D4×D5)⋊1C4 = D5×D4⋊C4φ: C4/C2C2 ⊆ Out D4×D580(D4xD5):1C4320,396
(D4×D5)⋊2C4 = (D4×D5)⋊C4φ: C4/C2C2 ⊆ Out D4×D580(D4xD5):2C4320,397
(D4×D5)⋊3C4 = D5×C4≀C2φ: C4/C2C2 ⊆ Out D4×D5404(D4xD5):3C4320,447
(D4×D5)⋊4C4 = C42⋊D10φ: C4/C2C2 ⊆ Out D4×D5804(D4xD5):4C4320,448
(D4×D5)⋊5C4 = C4211D10φ: C4/C2C2 ⊆ Out D4×D580(D4xD5):5C4320,1217
(D4×D5)⋊6C4 = C2×D20⋊C4φ: C4/C2C2 ⊆ Out D4×D580(D4xD5):6C4320,1104
(D4×D5)⋊7C4 = (D4×C10)⋊C4φ: C4/C2C2 ⊆ Out D4×D5408+(D4xD5):7C4320,1105
(D4×D5)⋊8C4 = D5⋊C4≀C2φ: C4/C2C2 ⊆ Out D4×D5408(D4xD5):8C4320,1130
(D4×D5)⋊9C4 = D4⋊F5⋊C2φ: C4/C2C2 ⊆ Out D4×D5808(D4xD5):9C4320,1133
(D4×D5)⋊10C4 = C2×D4×F5φ: C4/C2C2 ⊆ Out D4×D540(D4xD5):10C4320,1595
(D4×D5)⋊11C4 = D10.C24φ: C4/C2C2 ⊆ Out D4×D5408+(D4xD5):11C4320,1596

Non-split extensions G=N.Q with N=D4×D5 and Q=C4
extensionφ:Q→Out NdρLabelID
(D4×D5).1C4 = C20.72C24φ: C4/C2C2 ⊆ Out D4×D5804(D4xD5).1C4320,1422
(D4×D5).2C4 = Dic5.21C24φ: C4/C2C2 ⊆ Out D4×D5808(D4xD5).2C4320,1601
(D4×D5).3C4 = Dic5.22C24φ: C4/C2C2 ⊆ Out D4×D5808(D4xD5).3C4320,1602
(D4×D5).4C4 = D5×C8○D4φ: trivial image804(D4xD5).4C4320,1421

׿
×
𝔽