Copied to
clipboard

G = C2×D20⋊C4order 320 = 26·5

Direct product of C2 and D20⋊C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D20⋊C4, D10.21D8, D10.15SD16, (D4×D5)⋊6C4, (C2×D4)⋊3F5, D43(C2×F5), D203(C2×C4), (D4×C10)⋊5C4, (C2×D20)⋊8C4, D5.3(C2×D8), C4⋊F51C22, D5⋊(D4⋊C4), C10⋊(D4⋊C4), D5⋊C85C22, (C4×D5).32D4, D10.93(C2×D4), D5.3(C2×SD16), Dic5.3(C2×D4), C4.9(C22⋊F5), C4.13(C22×F5), C20.9(C22⋊C4), C20.13(C22×C4), (D4×D5).12C22, (C4×D5).35C23, (C2×Dic5).117D4, (C22×D5).145D4, D10.41(C22⋊C4), Dic5.9(C22⋊C4), C22.48(C22⋊F5), C5⋊(C2×D4⋊C4), (C2×C4⋊F5)⋊1C2, (C2×D5⋊C8)⋊1C2, (C5×D4)⋊3(C2×C4), (C2×D4×D5).13C2, (C2×C4).78(C2×F5), (C2×C20).49(C2×C4), (C4×D5).19(C2×C4), C2.14(C2×C22⋊F5), C10.13(C2×C22⋊C4), (C2×C4×D5).196C22, (C2×C10).53(C22⋊C4), SmallGroup(320,1104)

Series: Derived Chief Lower central Upper central

C1C20 — C2×D20⋊C4
C1C5C10D10C4×D5C4⋊F5C2×C4⋊F5 — C2×D20⋊C4
C5C10C20 — C2×D20⋊C4
C1C22C2×C4C2×D4

Generators and relations for C2×D20⋊C4
 G = < a,b,c,d | a2=b20=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b3, dcd-1=b17c >

Subgroups: 1066 in 202 conjugacy classes, 60 normal (32 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, C23, D5, D5, D5, C10, C10, C10, C4⋊C4, C2×C8, C22×C4, C2×D4, C2×D4, C24, Dic5, C20, F5, D10, D10, D10, C2×C10, C2×C10, D4⋊C4, C2×C4⋊C4, C22×C8, C22×D4, C5⋊C8, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C5×D4, C2×F5, C22×D5, C22×D5, C22×C10, C2×D4⋊C4, D5⋊C8, D5⋊C8, C4⋊F5, C4⋊F5, C2×C5⋊C8, C2×C4×D5, C2×D20, D4×D5, D4×D5, C2×C5⋊D4, D4×C10, C22×F5, C23×D5, D20⋊C4, C2×D5⋊C8, C2×C4⋊F5, C2×D4×D5, C2×D20⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, D8, SD16, C22×C4, C2×D4, F5, D4⋊C4, C2×C22⋊C4, C2×D8, C2×SD16, C2×F5, C2×D4⋊C4, C22⋊F5, C22×F5, D20⋊C4, C2×C22⋊F5, C2×D20⋊C4

Smallest permutation representation of C2×D20⋊C4
On 80 points
Generators in S80
(1 33)(2 34)(3 35)(4 36)(5 37)(6 38)(7 39)(8 40)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(41 80)(42 61)(43 62)(44 63)(45 64)(46 65)(47 66)(48 67)(49 68)(50 69)(51 70)(52 71)(53 72)(54 73)(55 74)(56 75)(57 76)(58 77)(59 78)(60 79)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 24)(22 23)(25 40)(26 39)(27 38)(28 37)(29 36)(30 35)(31 34)(32 33)(41 53)(42 52)(43 51)(44 50)(45 49)(46 48)(54 60)(55 59)(56 58)(61 71)(62 70)(63 69)(64 68)(65 67)(72 80)(73 79)(74 78)(75 77)
(1 60 33 79)(2 47 22 62)(3 54 31 65)(4 41 40 68)(5 48 29 71)(6 55 38 74)(7 42 27 77)(8 49 36 80)(9 56 25 63)(10 43 34 66)(11 50 23 69)(12 57 32 72)(13 44 21 75)(14 51 30 78)(15 58 39 61)(16 45 28 64)(17 52 37 67)(18 59 26 70)(19 46 35 73)(20 53 24 76)

G:=sub<Sym(80)| (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(41,80)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(57,76)(58,77)(59,78)(60,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,24)(22,23)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(41,53)(42,52)(43,51)(44,50)(45,49)(46,48)(54,60)(55,59)(56,58)(61,71)(62,70)(63,69)(64,68)(65,67)(72,80)(73,79)(74,78)(75,77), (1,60,33,79)(2,47,22,62)(3,54,31,65)(4,41,40,68)(5,48,29,71)(6,55,38,74)(7,42,27,77)(8,49,36,80)(9,56,25,63)(10,43,34,66)(11,50,23,69)(12,57,32,72)(13,44,21,75)(14,51,30,78)(15,58,39,61)(16,45,28,64)(17,52,37,67)(18,59,26,70)(19,46,35,73)(20,53,24,76)>;

G:=Group( (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(41,80)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(57,76)(58,77)(59,78)(60,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,24)(22,23)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(41,53)(42,52)(43,51)(44,50)(45,49)(46,48)(54,60)(55,59)(56,58)(61,71)(62,70)(63,69)(64,68)(65,67)(72,80)(73,79)(74,78)(75,77), (1,60,33,79)(2,47,22,62)(3,54,31,65)(4,41,40,68)(5,48,29,71)(6,55,38,74)(7,42,27,77)(8,49,36,80)(9,56,25,63)(10,43,34,66)(11,50,23,69)(12,57,32,72)(13,44,21,75)(14,51,30,78)(15,58,39,61)(16,45,28,64)(17,52,37,67)(18,59,26,70)(19,46,35,73)(20,53,24,76) );

G=PermutationGroup([[(1,33),(2,34),(3,35),(4,36),(5,37),(6,38),(7,39),(8,40),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(41,80),(42,61),(43,62),(44,63),(45,64),(46,65),(47,66),(48,67),(49,68),(50,69),(51,70),(52,71),(53,72),(54,73),(55,74),(56,75),(57,76),(58,77),(59,78),(60,79)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,24),(22,23),(25,40),(26,39),(27,38),(28,37),(29,36),(30,35),(31,34),(32,33),(41,53),(42,52),(43,51),(44,50),(45,49),(46,48),(54,60),(55,59),(56,58),(61,71),(62,70),(63,69),(64,68),(65,67),(72,80),(73,79),(74,78),(75,77)], [(1,60,33,79),(2,47,22,62),(3,54,31,65),(4,41,40,68),(5,48,29,71),(6,55,38,74),(7,42,27,77),(8,49,36,80),(9,56,25,63),(10,43,34,66),(11,50,23,69),(12,57,32,72),(13,44,21,75),(14,51,30,78),(15,58,39,61),(16,45,28,64),(17,52,37,67),(18,59,26,70),(19,46,35,73),(20,53,24,76)]])

38 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H 5 8A···8H10A10B10C10D10E10F10G20A20B
order1222222222224444444458···8101010101010102020
size1111445555202022101020202020410···10444888888

38 irreducible representations

dim1111111122222444448
type+++++++++++++++
imageC1C2C2C2C2C4C4C4D4D4D4D8SD16F5C2×F5C2×F5C22⋊F5C22⋊F5D20⋊C4
kernelC2×D20⋊C4D20⋊C4C2×D5⋊C8C2×C4⋊F5C2×D4×D5C2×D20D4×D5D4×C10C4×D5C2×Dic5C22×D5D10D10C2×D4C2×C4D4C4C22C2
# reps1411124221144112222

Matrix representation of C2×D20⋊C4 in GL6(𝔽41)

4000000
0400000
0040000
0004000
0000400
0000040
,
4050000
1610000
0004000
0013500
0000135
000066
,
1360000
0400000
0004000
0040000
0000406
000001
,
17190000
28240000
0000400
0000040
001000
0064000

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,16,0,0,0,0,5,1,0,0,0,0,0,0,0,1,0,0,0,0,40,35,0,0,0,0,0,0,1,6,0,0,0,0,35,6],[1,0,0,0,0,0,36,40,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,6,1],[17,28,0,0,0,0,19,24,0,0,0,0,0,0,0,0,1,6,0,0,0,0,0,40,0,0,40,0,0,0,0,0,0,40,0,0] >;

C2×D20⋊C4 in GAP, Magma, Sage, TeX

C_2\times D_{20}\rtimes C_4
% in TeX

G:=Group("C2xD20:C4");
// GroupNames label

G:=SmallGroup(320,1104);
// by ID

G=gap.SmallGroup(320,1104);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,422,1684,438,102,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^3,d*c*d^-1=b^17*c>;
// generators/relations

׿
×
𝔽