Extensions 1→N→G→Q→1 with N=C2 and Q=D4⋊Dic5

Direct product G=N×Q with N=C2 and Q=D4⋊Dic5
dρLabelID
C2×D4⋊Dic5160C2xD4:Dic5320,841


Non-split extensions G=N.Q with N=C2 and Q=D4⋊Dic5
extensionφ:Q→Aut NdρLabelID
C2.1(D4⋊Dic5) = C20.31C42central extension (φ=1)320C2.1(D4:Dic5)320,87
C2.2(D4⋊Dic5) = C20.57D8central extension (φ=1)160C2.2(D4:Dic5)320,92
C2.3(D4⋊Dic5) = C4⋊C4⋊Dic5central stem extension (φ=1)80C2.3(D4:Dic5)320,95
C2.4(D4⋊Dic5) = C20.9D8central stem extension (φ=1)160C2.4(D4:Dic5)320,102
C2.5(D4⋊Dic5) = C20.10D8central stem extension (φ=1)320C2.5(D4:Dic5)320,105
C2.6(D4⋊Dic5) = C10.D16central stem extension (φ=1)160C2.6(D4:Dic5)320,120
C2.7(D4⋊Dic5) = D8.Dic5central stem extension (φ=1)804C2.7(D4:Dic5)320,121
C2.8(D4⋊Dic5) = C40.15D4central stem extension (φ=1)320C2.8(D4:Dic5)320,122
C2.9(D4⋊Dic5) = Q16.Dic5central stem extension (φ=1)1604C2.9(D4:Dic5)320,123
C2.10(D4⋊Dic5) = D82Dic5central stem extension (φ=1)804C2.10(D4:Dic5)320,124
C2.11(D4⋊Dic5) = C20.58D8central stem extension (φ=1)1604C2.11(D4:Dic5)320,125

׿
×
𝔽