Copied to
clipboard

G = C2×D4⋊Dic5order 320 = 26·5

Direct product of C2 and D4⋊Dic5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D4⋊Dic5, (D4×C10)⋊17C4, D43(C2×Dic5), (C2×D4)⋊3Dic5, (C2×C10).47D8, C10.71(C2×D8), (C2×C20).188D4, C20.202(C2×D4), C104(D4⋊C4), (C22×D4).1D5, (C2×D4).195D10, C4⋊Dic567C22, (C2×C10).34SD16, C10.63(C2×SD16), C4.7(C23.D5), C4.9(C22×Dic5), C20.77(C22⋊C4), C20.138(C22×C4), (C2×C20).469C23, C22.25(D4⋊D5), (C22×C10).194D4, (C22×C4).352D10, (D4×C10).237C22, C23.100(C5⋊D4), C22.12(D4.D5), (C22×C20).194C22, C22.33(C23.D5), C55(C2×D4⋊C4), C2.4(C2×D4⋊D5), (D4×C2×C10).1C2, (C5×D4)⋊26(C2×C4), C4.88(C2×C5⋊D4), C2.4(C2×D4.D5), (C2×C4⋊Dic5)⋊34C2, (C22×C52C8)⋊7C2, (C2×C20).288(C2×C4), (C2×C52C8)⋊32C22, C2.7(C2×C23.D5), (C2×C10).551(C2×D4), (C2×C4).49(C2×Dic5), C22.89(C2×C5⋊D4), (C2×C4).147(C5⋊D4), C10.112(C2×C22⋊C4), (C2×C4).556(C22×D5), (C2×C10).174(C22⋊C4), SmallGroup(320,841)

Series: Derived Chief Lower central Upper central

C1C20 — C2×D4⋊Dic5
C1C5C10C2×C10C2×C20C4⋊Dic5C2×C4⋊Dic5 — C2×D4⋊Dic5
C5C10C20 — C2×D4⋊Dic5
C1C23C22×C4C22×D4

Generators and relations for C2×D4⋊Dic5
 G = < a,b,c,d,e | a2=b4=c2=d10=1, e2=d5, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, cd=dc, ece-1=bc, ede-1=d-1 >

Subgroups: 574 in 202 conjugacy classes, 87 normal (27 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, D4, C23, C23, C10, C10, C10, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C24, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, D4⋊C4, C2×C4⋊C4, C22×C8, C22×D4, C52C8, C2×Dic5, C2×C20, C2×C20, C5×D4, C5×D4, C22×C10, C22×C10, C2×D4⋊C4, C2×C52C8, C2×C52C8, C4⋊Dic5, C4⋊Dic5, C22×Dic5, C22×C20, D4×C10, D4×C10, C23×C10, D4⋊Dic5, C22×C52C8, C2×C4⋊Dic5, D4×C2×C10, C2×D4⋊Dic5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, D8, SD16, C22×C4, C2×D4, Dic5, D10, D4⋊C4, C2×C22⋊C4, C2×D8, C2×SD16, C2×Dic5, C5⋊D4, C22×D5, C2×D4⋊C4, D4⋊D5, D4.D5, C23.D5, C22×Dic5, C2×C5⋊D4, D4⋊Dic5, C2×D4⋊D5, C2×D4.D5, C2×C23.D5, C2×D4⋊Dic5

Smallest permutation representation of C2×D4⋊Dic5
On 160 points
Generators in S160
(1 52)(2 53)(3 54)(4 55)(5 56)(6 57)(7 58)(8 59)(9 60)(10 51)(11 64)(12 65)(13 66)(14 67)(15 68)(16 69)(17 70)(18 61)(19 62)(20 63)(21 123)(22 124)(23 125)(24 126)(25 127)(26 128)(27 129)(28 130)(29 121)(30 122)(31 76)(32 77)(33 78)(34 79)(35 80)(36 71)(37 72)(38 73)(39 74)(40 75)(41 89)(42 90)(43 81)(44 82)(45 83)(46 84)(47 85)(48 86)(49 87)(50 88)(91 136)(92 137)(93 138)(94 139)(95 140)(96 131)(97 132)(98 133)(99 134)(100 135)(101 146)(102 147)(103 148)(104 149)(105 150)(106 141)(107 142)(108 143)(109 144)(110 145)(111 156)(112 157)(113 158)(114 159)(115 160)(116 151)(117 152)(118 153)(119 154)(120 155)
(1 47 31 18)(2 48 32 19)(3 49 33 20)(4 50 34 11)(5 41 35 12)(6 42 36 13)(7 43 37 14)(8 44 38 15)(9 45 39 16)(10 46 40 17)(21 138 144 159)(22 139 145 160)(23 140 146 151)(24 131 147 152)(25 132 148 153)(26 133 149 154)(27 134 150 155)(28 135 141 156)(29 136 142 157)(30 137 143 158)(51 84 75 70)(52 85 76 61)(53 86 77 62)(54 87 78 63)(55 88 79 64)(56 89 80 65)(57 90 71 66)(58 81 72 67)(59 82 73 68)(60 83 74 69)(91 107 112 121)(92 108 113 122)(93 109 114 123)(94 110 115 124)(95 101 116 125)(96 102 117 126)(97 103 118 127)(98 104 119 128)(99 105 120 129)(100 106 111 130)
(1 18)(2 19)(3 20)(4 11)(5 12)(6 13)(7 14)(8 15)(9 16)(10 17)(31 47)(32 48)(33 49)(34 50)(35 41)(36 42)(37 43)(38 44)(39 45)(40 46)(51 70)(52 61)(53 62)(54 63)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(71 90)(72 81)(73 82)(74 83)(75 84)(76 85)(77 86)(78 87)(79 88)(80 89)(91 112)(92 113)(93 114)(94 115)(95 116)(96 117)(97 118)(98 119)(99 120)(100 111)(131 152)(132 153)(133 154)(134 155)(135 156)(136 157)(137 158)(138 159)(139 160)(140 151)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 133 6 138)(2 132 7 137)(3 131 8 136)(4 140 9 135)(5 139 10 134)(11 146 16 141)(12 145 17 150)(13 144 18 149)(14 143 19 148)(15 142 20 147)(21 47 26 42)(22 46 27 41)(23 45 28 50)(24 44 29 49)(25 43 30 48)(31 154 36 159)(32 153 37 158)(33 152 38 157)(34 151 39 156)(35 160 40 155)(51 99 56 94)(52 98 57 93)(53 97 58 92)(54 96 59 91)(55 95 60 100)(61 104 66 109)(62 103 67 108)(63 102 68 107)(64 101 69 106)(65 110 70 105)(71 114 76 119)(72 113 77 118)(73 112 78 117)(74 111 79 116)(75 120 80 115)(81 122 86 127)(82 121 87 126)(83 130 88 125)(84 129 89 124)(85 128 90 123)

G:=sub<Sym(160)| (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,51)(11,64)(12,65)(13,66)(14,67)(15,68)(16,69)(17,70)(18,61)(19,62)(20,63)(21,123)(22,124)(23,125)(24,126)(25,127)(26,128)(27,129)(28,130)(29,121)(30,122)(31,76)(32,77)(33,78)(34,79)(35,80)(36,71)(37,72)(38,73)(39,74)(40,75)(41,89)(42,90)(43,81)(44,82)(45,83)(46,84)(47,85)(48,86)(49,87)(50,88)(91,136)(92,137)(93,138)(94,139)(95,140)(96,131)(97,132)(98,133)(99,134)(100,135)(101,146)(102,147)(103,148)(104,149)(105,150)(106,141)(107,142)(108,143)(109,144)(110,145)(111,156)(112,157)(113,158)(114,159)(115,160)(116,151)(117,152)(118,153)(119,154)(120,155), (1,47,31,18)(2,48,32,19)(3,49,33,20)(4,50,34,11)(5,41,35,12)(6,42,36,13)(7,43,37,14)(8,44,38,15)(9,45,39,16)(10,46,40,17)(21,138,144,159)(22,139,145,160)(23,140,146,151)(24,131,147,152)(25,132,148,153)(26,133,149,154)(27,134,150,155)(28,135,141,156)(29,136,142,157)(30,137,143,158)(51,84,75,70)(52,85,76,61)(53,86,77,62)(54,87,78,63)(55,88,79,64)(56,89,80,65)(57,90,71,66)(58,81,72,67)(59,82,73,68)(60,83,74,69)(91,107,112,121)(92,108,113,122)(93,109,114,123)(94,110,115,124)(95,101,116,125)(96,102,117,126)(97,103,118,127)(98,104,119,128)(99,105,120,129)(100,106,111,130), (1,18)(2,19)(3,20)(4,11)(5,12)(6,13)(7,14)(8,15)(9,16)(10,17)(31,47)(32,48)(33,49)(34,50)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46)(51,70)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(71,90)(72,81)(73,82)(74,83)(75,84)(76,85)(77,86)(78,87)(79,88)(80,89)(91,112)(92,113)(93,114)(94,115)(95,116)(96,117)(97,118)(98,119)(99,120)(100,111)(131,152)(132,153)(133,154)(134,155)(135,156)(136,157)(137,158)(138,159)(139,160)(140,151), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,133,6,138)(2,132,7,137)(3,131,8,136)(4,140,9,135)(5,139,10,134)(11,146,16,141)(12,145,17,150)(13,144,18,149)(14,143,19,148)(15,142,20,147)(21,47,26,42)(22,46,27,41)(23,45,28,50)(24,44,29,49)(25,43,30,48)(31,154,36,159)(32,153,37,158)(33,152,38,157)(34,151,39,156)(35,160,40,155)(51,99,56,94)(52,98,57,93)(53,97,58,92)(54,96,59,91)(55,95,60,100)(61,104,66,109)(62,103,67,108)(63,102,68,107)(64,101,69,106)(65,110,70,105)(71,114,76,119)(72,113,77,118)(73,112,78,117)(74,111,79,116)(75,120,80,115)(81,122,86,127)(82,121,87,126)(83,130,88,125)(84,129,89,124)(85,128,90,123)>;

G:=Group( (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,51)(11,64)(12,65)(13,66)(14,67)(15,68)(16,69)(17,70)(18,61)(19,62)(20,63)(21,123)(22,124)(23,125)(24,126)(25,127)(26,128)(27,129)(28,130)(29,121)(30,122)(31,76)(32,77)(33,78)(34,79)(35,80)(36,71)(37,72)(38,73)(39,74)(40,75)(41,89)(42,90)(43,81)(44,82)(45,83)(46,84)(47,85)(48,86)(49,87)(50,88)(91,136)(92,137)(93,138)(94,139)(95,140)(96,131)(97,132)(98,133)(99,134)(100,135)(101,146)(102,147)(103,148)(104,149)(105,150)(106,141)(107,142)(108,143)(109,144)(110,145)(111,156)(112,157)(113,158)(114,159)(115,160)(116,151)(117,152)(118,153)(119,154)(120,155), (1,47,31,18)(2,48,32,19)(3,49,33,20)(4,50,34,11)(5,41,35,12)(6,42,36,13)(7,43,37,14)(8,44,38,15)(9,45,39,16)(10,46,40,17)(21,138,144,159)(22,139,145,160)(23,140,146,151)(24,131,147,152)(25,132,148,153)(26,133,149,154)(27,134,150,155)(28,135,141,156)(29,136,142,157)(30,137,143,158)(51,84,75,70)(52,85,76,61)(53,86,77,62)(54,87,78,63)(55,88,79,64)(56,89,80,65)(57,90,71,66)(58,81,72,67)(59,82,73,68)(60,83,74,69)(91,107,112,121)(92,108,113,122)(93,109,114,123)(94,110,115,124)(95,101,116,125)(96,102,117,126)(97,103,118,127)(98,104,119,128)(99,105,120,129)(100,106,111,130), (1,18)(2,19)(3,20)(4,11)(5,12)(6,13)(7,14)(8,15)(9,16)(10,17)(31,47)(32,48)(33,49)(34,50)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46)(51,70)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(71,90)(72,81)(73,82)(74,83)(75,84)(76,85)(77,86)(78,87)(79,88)(80,89)(91,112)(92,113)(93,114)(94,115)(95,116)(96,117)(97,118)(98,119)(99,120)(100,111)(131,152)(132,153)(133,154)(134,155)(135,156)(136,157)(137,158)(138,159)(139,160)(140,151), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,133,6,138)(2,132,7,137)(3,131,8,136)(4,140,9,135)(5,139,10,134)(11,146,16,141)(12,145,17,150)(13,144,18,149)(14,143,19,148)(15,142,20,147)(21,47,26,42)(22,46,27,41)(23,45,28,50)(24,44,29,49)(25,43,30,48)(31,154,36,159)(32,153,37,158)(33,152,38,157)(34,151,39,156)(35,160,40,155)(51,99,56,94)(52,98,57,93)(53,97,58,92)(54,96,59,91)(55,95,60,100)(61,104,66,109)(62,103,67,108)(63,102,68,107)(64,101,69,106)(65,110,70,105)(71,114,76,119)(72,113,77,118)(73,112,78,117)(74,111,79,116)(75,120,80,115)(81,122,86,127)(82,121,87,126)(83,130,88,125)(84,129,89,124)(85,128,90,123) );

G=PermutationGroup([[(1,52),(2,53),(3,54),(4,55),(5,56),(6,57),(7,58),(8,59),(9,60),(10,51),(11,64),(12,65),(13,66),(14,67),(15,68),(16,69),(17,70),(18,61),(19,62),(20,63),(21,123),(22,124),(23,125),(24,126),(25,127),(26,128),(27,129),(28,130),(29,121),(30,122),(31,76),(32,77),(33,78),(34,79),(35,80),(36,71),(37,72),(38,73),(39,74),(40,75),(41,89),(42,90),(43,81),(44,82),(45,83),(46,84),(47,85),(48,86),(49,87),(50,88),(91,136),(92,137),(93,138),(94,139),(95,140),(96,131),(97,132),(98,133),(99,134),(100,135),(101,146),(102,147),(103,148),(104,149),(105,150),(106,141),(107,142),(108,143),(109,144),(110,145),(111,156),(112,157),(113,158),(114,159),(115,160),(116,151),(117,152),(118,153),(119,154),(120,155)], [(1,47,31,18),(2,48,32,19),(3,49,33,20),(4,50,34,11),(5,41,35,12),(6,42,36,13),(7,43,37,14),(8,44,38,15),(9,45,39,16),(10,46,40,17),(21,138,144,159),(22,139,145,160),(23,140,146,151),(24,131,147,152),(25,132,148,153),(26,133,149,154),(27,134,150,155),(28,135,141,156),(29,136,142,157),(30,137,143,158),(51,84,75,70),(52,85,76,61),(53,86,77,62),(54,87,78,63),(55,88,79,64),(56,89,80,65),(57,90,71,66),(58,81,72,67),(59,82,73,68),(60,83,74,69),(91,107,112,121),(92,108,113,122),(93,109,114,123),(94,110,115,124),(95,101,116,125),(96,102,117,126),(97,103,118,127),(98,104,119,128),(99,105,120,129),(100,106,111,130)], [(1,18),(2,19),(3,20),(4,11),(5,12),(6,13),(7,14),(8,15),(9,16),(10,17),(31,47),(32,48),(33,49),(34,50),(35,41),(36,42),(37,43),(38,44),(39,45),(40,46),(51,70),(52,61),(53,62),(54,63),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(71,90),(72,81),(73,82),(74,83),(75,84),(76,85),(77,86),(78,87),(79,88),(80,89),(91,112),(92,113),(93,114),(94,115),(95,116),(96,117),(97,118),(98,119),(99,120),(100,111),(131,152),(132,153),(133,154),(134,155),(135,156),(136,157),(137,158),(138,159),(139,160),(140,151)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,133,6,138),(2,132,7,137),(3,131,8,136),(4,140,9,135),(5,139,10,134),(11,146,16,141),(12,145,17,150),(13,144,18,149),(14,143,19,148),(15,142,20,147),(21,47,26,42),(22,46,27,41),(23,45,28,50),(24,44,29,49),(25,43,30,48),(31,154,36,159),(32,153,37,158),(33,152,38,157),(34,151,39,156),(35,160,40,155),(51,99,56,94),(52,98,57,93),(53,97,58,92),(54,96,59,91),(55,95,60,100),(61,104,66,109),(62,103,67,108),(63,102,68,107),(64,101,69,106),(65,110,70,105),(71,114,76,119),(72,113,77,118),(73,112,78,117),(74,111,79,116),(75,120,80,115),(81,122,86,127),(82,121,87,126),(83,130,88,125),(84,129,89,124),(85,128,90,123)]])

68 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E4F4G4H5A5B8A···8H10A···10N10O···10AD20A···20H
order12···2222244444444558···810···1010···1020···20
size11···144442222202020202210···102···24···44···4

68 irreducible representations

dim111111222222222244
type++++++++++-++-
imageC1C2C2C2C2C4D4D4D5D8SD16D10Dic5D10C5⋊D4C5⋊D4D4⋊D5D4.D5
kernelC2×D4⋊Dic5D4⋊Dic5C22×C52C8C2×C4⋊Dic5D4×C2×C10D4×C10C2×C20C22×C10C22×D4C2×C10C2×C10C22×C4C2×D4C2×D4C2×C4C23C22C22
# reps1411183124428412444

Matrix representation of C2×D4⋊Dic5 in GL7(𝔽41)

1000000
0100000
0010000
00040000
00004000
0000010
0000001
,
1000000
0100000
0010000
00040000
00004000
0000001
00000400
,
40000000
0100000
0010000
00040000
00014100
0000001
0000010
,
40000000
034400000
0100000
00040000
00004000
00000400
00000040
,
9000000
06390000
038350000
00015800
000232600
000002615
000001515

G:=sub<GL(7,GF(41))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,1,0],[40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,14,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0],[40,0,0,0,0,0,0,0,34,1,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40],[9,0,0,0,0,0,0,0,6,38,0,0,0,0,0,39,35,0,0,0,0,0,0,0,15,23,0,0,0,0,0,8,26,0,0,0,0,0,0,0,26,15,0,0,0,0,0,15,15] >;

C2×D4⋊Dic5 in GAP, Magma, Sage, TeX

C_2\times D_4\rtimes {\rm Dic}_5
% in TeX

G:=Group("C2xD4:Dic5");
// GroupNames label

G:=SmallGroup(320,841);
// by ID

G=gap.SmallGroup(320,841);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,422,1684,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^10=1,e^2=d^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽