metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C20.7D4, D4⋊1Dic5, C10.12D8, C10.6SD16, (C5×D4)⋊4C4, (C2×D4).1D5, C5⋊4(D4⋊C4), C20.28(C2×C4), C4⋊Dic5⋊10C2, C2.3(D4⋊D5), (D4×C10).1C2, (C2×C10).33D4, (C2×C4).39D10, C4.1(C2×Dic5), C4.12(C5⋊D4), C2.3(D4.D5), (C2×C20).16C22, C2.3(C23.D5), C10.24(C22⋊C4), C22.17(C5⋊D4), (C2×C5⋊2C8)⋊2C2, SmallGroup(160,39)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4⋊Dic5
G = < a,b,c,d | a4=b2=c10=1, d2=c5, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c-1 >
(1 45 39 14)(2 46 40 15)(3 47 31 16)(4 48 32 17)(5 49 33 18)(6 50 34 19)(7 41 35 20)(8 42 36 11)(9 43 37 12)(10 44 38 13)(21 56 65 76)(22 57 66 77)(23 58 67 78)(24 59 68 79)(25 60 69 80)(26 51 70 71)(27 52 61 72)(28 53 62 73)(29 54 63 74)(30 55 64 75)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 11)(9 12)(10 13)(31 47)(32 48)(33 49)(34 50)(35 41)(36 42)(37 43)(38 44)(39 45)(40 46)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 56 6 51)(2 55 7 60)(3 54 8 59)(4 53 9 58)(5 52 10 57)(11 68 16 63)(12 67 17 62)(13 66 18 61)(14 65 19 70)(15 64 20 69)(21 50 26 45)(22 49 27 44)(23 48 28 43)(24 47 29 42)(25 46 30 41)(31 74 36 79)(32 73 37 78)(33 72 38 77)(34 71 39 76)(35 80 40 75)
G:=sub<Sym(80)| (1,45,39,14)(2,46,40,15)(3,47,31,16)(4,48,32,17)(5,49,33,18)(6,50,34,19)(7,41,35,20)(8,42,36,11)(9,43,37,12)(10,44,38,13)(21,56,65,76)(22,57,66,77)(23,58,67,78)(24,59,68,79)(25,60,69,80)(26,51,70,71)(27,52,61,72)(28,53,62,73)(29,54,63,74)(30,55,64,75), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,11)(9,12)(10,13)(31,47)(32,48)(33,49)(34,50)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,56,6,51)(2,55,7,60)(3,54,8,59)(4,53,9,58)(5,52,10,57)(11,68,16,63)(12,67,17,62)(13,66,18,61)(14,65,19,70)(15,64,20,69)(21,50,26,45)(22,49,27,44)(23,48,28,43)(24,47,29,42)(25,46,30,41)(31,74,36,79)(32,73,37,78)(33,72,38,77)(34,71,39,76)(35,80,40,75)>;
G:=Group( (1,45,39,14)(2,46,40,15)(3,47,31,16)(4,48,32,17)(5,49,33,18)(6,50,34,19)(7,41,35,20)(8,42,36,11)(9,43,37,12)(10,44,38,13)(21,56,65,76)(22,57,66,77)(23,58,67,78)(24,59,68,79)(25,60,69,80)(26,51,70,71)(27,52,61,72)(28,53,62,73)(29,54,63,74)(30,55,64,75), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,11)(9,12)(10,13)(31,47)(32,48)(33,49)(34,50)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,56,6,51)(2,55,7,60)(3,54,8,59)(4,53,9,58)(5,52,10,57)(11,68,16,63)(12,67,17,62)(13,66,18,61)(14,65,19,70)(15,64,20,69)(21,50,26,45)(22,49,27,44)(23,48,28,43)(24,47,29,42)(25,46,30,41)(31,74,36,79)(32,73,37,78)(33,72,38,77)(34,71,39,76)(35,80,40,75) );
G=PermutationGroup([[(1,45,39,14),(2,46,40,15),(3,47,31,16),(4,48,32,17),(5,49,33,18),(6,50,34,19),(7,41,35,20),(8,42,36,11),(9,43,37,12),(10,44,38,13),(21,56,65,76),(22,57,66,77),(23,58,67,78),(24,59,68,79),(25,60,69,80),(26,51,70,71),(27,52,61,72),(28,53,62,73),(29,54,63,74),(30,55,64,75)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,11),(9,12),(10,13),(31,47),(32,48),(33,49),(34,50),(35,41),(36,42),(37,43),(38,44),(39,45),(40,46),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,56,6,51),(2,55,7,60),(3,54,8,59),(4,53,9,58),(5,52,10,57),(11,68,16,63),(12,67,17,62),(13,66,18,61),(14,65,19,70),(15,64,20,69),(21,50,26,45),(22,49,27,44),(23,48,28,43),(24,47,29,42),(25,46,30,41),(31,74,36,79),(32,73,37,78),(33,72,38,77),(34,71,39,76),(35,80,40,75)]])
D4⋊Dic5 is a maximal subgroup of
Dic5.14D8 Dic5.5D8 D4⋊Dic10 D4.Dic10 C4⋊C4.D10 C20⋊Q8⋊C2 D4.2Dic10 (C8×Dic5)⋊C2 D5×D4⋊C4 (D4×D5)⋊C4 D4⋊(C4×D5) D4⋊2D5⋊C4 D10.12D8 D10.16SD16 C40⋊6C4⋊C2 C40⋊5C4⋊C2 C20.50D8 C20.38SD16 D4.3Dic10 C4×D4⋊D5 C42.48D10 C4×D4.D5 C42.51D10 (C2×C10).D8 C4⋊D4.D5 (C2×D4).D10 (C2×C10)⋊D8 C4⋊D4⋊D5 C5⋊2C8⋊23D4 C4.(D4×D5) C42.61D10 C42.62D10 C42.213D10 D20.23D4 C20.16D8 C42.72D10 C20⋊2D8 Dic10⋊9D4 D8×Dic5 Dic5⋊D8 D8⋊Dic5 (C2×D8).D5 D20⋊D4 C40⋊6D4 Dic10⋊D4 C40⋊12D4 SD16×Dic5 Dic5⋊5SD16 SD16⋊Dic5 (C5×Q8).D4 D10⋊6SD16 C40⋊14D4 Dic10.16D4 C40⋊8D4 (D4×C10)⋊18C4 (C2×C10)⋊8D8 (C5×D4).31D4 C4○D4⋊Dic5 C20.(C2×D4) (C5×D4)⋊14D4 (C5×D4).32D4 D12⋊Dic5 C10.D24 D4⋊Dic15
D4⋊Dic5 is a maximal quotient of
C20.31C42 C20.57D8 C4⋊C4⋊Dic5 C20.9D8 C20.10D8 C10.D16 D8.Dic5 C40.15D4 Q16.Dic5 D8⋊2Dic5 C20.58D8 D12⋊Dic5 C10.D24 D4⋊Dic15
34 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 10G | ··· | 10N | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 20 | 20 | 2 | 2 | 10 | 10 | 10 | 10 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | - | ||||
image | C1 | C2 | C2 | C2 | C4 | D4 | D4 | D5 | D8 | SD16 | D10 | Dic5 | C5⋊D4 | C5⋊D4 | D4⋊D5 | D4.D5 |
kernel | D4⋊Dic5 | C2×C5⋊2C8 | C4⋊Dic5 | D4×C10 | C5×D4 | C20 | C2×C10 | C2×D4 | C10 | C10 | C2×C4 | D4 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 2 |
Matrix representation of D4⋊Dic5 ►in GL4(𝔽41) generated by
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 1 | 32 |
0 | 0 | 23 | 40 |
40 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 32 |
0 | 0 | 0 | 40 |
25 | 0 | 0 | 0 |
0 | 23 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
0 | 1 | 0 | 0 |
40 | 0 | 0 | 0 |
0 | 0 | 0 | 12 |
0 | 0 | 17 | 0 |
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,1,23,0,0,32,40],[40,0,0,0,0,1,0,0,0,0,1,0,0,0,32,40],[25,0,0,0,0,23,0,0,0,0,40,0,0,0,0,40],[0,40,0,0,1,0,0,0,0,0,0,17,0,0,12,0] >;
D4⋊Dic5 in GAP, Magma, Sage, TeX
D_4\rtimes {\rm Dic}_5
% in TeX
G:=Group("D4:Dic5");
// GroupNames label
G:=SmallGroup(160,39);
// by ID
G=gap.SmallGroup(160,39);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,121,579,297,69,4613]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^10=1,d^2=c^5,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations
Export