Extensions 1→N→G→Q→1 with N=Q8×D5 and Q=C4

Direct product G=N×Q with N=Q8×D5 and Q=C4
dρLabelID
C4×Q8×D5160C4xQ8xD5320,1243

Semidirect products G=N:Q with N=Q8×D5 and Q=C4
extensionφ:Q→Out NdρLabelID
(Q8×D5)⋊1C4 = D5×Q8⋊C4φ: C4/C2C2 ⊆ Out Q8×D5160(Q8xD5):1C4320,428
(Q8×D5)⋊2C4 = (Q8×D5)⋊C4φ: C4/C2C2 ⊆ Out Q8×D5160(Q8xD5):2C4320,429
(Q8×D5)⋊3C4 = D5×C4≀C2φ: C4/C2C2 ⊆ Out Q8×D5404(Q8xD5):3C4320,447
(Q8×D5)⋊4C4 = C42⋊D10φ: C4/C2C2 ⊆ Out Q8×D5804(Q8xD5):4C4320,448
(Q8×D5)⋊5C4 = C42.125D10φ: C4/C2C2 ⊆ Out Q8×D5160(Q8xD5):5C4320,1244
(Q8×D5)⋊6C4 = C2×Q8⋊F5φ: C4/C2C2 ⊆ Out Q8×D580(Q8xD5):6C4320,1119
(Q8×D5)⋊7C4 = (C2×Q8)⋊4F5φ: C4/C2C2 ⊆ Out Q8×D5808-(Q8xD5):7C4320,1120
(Q8×D5)⋊8C4 = D5⋊C4≀C2φ: C4/C2C2 ⊆ Out Q8×D5408(Q8xD5):8C4320,1130
(Q8×D5)⋊9C4 = D4⋊F5⋊C2φ: C4/C2C2 ⊆ Out Q8×D5808(Q8xD5):9C4320,1133
(Q8×D5)⋊10C4 = C2×Q8×F5φ: C4/C2C2 ⊆ Out Q8×D580(Q8xD5):10C4320,1599
(Q8×D5)⋊11C4 = D5.2- 1+4φ: C4/C2C2 ⊆ Out Q8×D5808-(Q8xD5):11C4320,1600

Non-split extensions G=N.Q with N=Q8×D5 and Q=C4
extensionφ:Q→Out NdρLabelID
(Q8×D5).1C4 = C20.72C24φ: C4/C2C2 ⊆ Out Q8×D5804(Q8xD5).1C4320,1422
(Q8×D5).2C4 = Dic5.21C24φ: C4/C2C2 ⊆ Out Q8×D5808(Q8xD5).2C4320,1601
(Q8×D5).3C4 = Dic5.22C24φ: C4/C2C2 ⊆ Out Q8×D5808(Q8xD5).3C4320,1602
(Q8×D5).4C4 = D5×C8○D4φ: trivial image804(Q8xD5).4C4320,1421

׿
×
𝔽