Copied to
clipboard

G = (C2×Q8)⋊4F5order 320 = 26·5

2nd semidirect product of C2×Q8 and F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×Q8)⋊4F5, (Q8×D5)⋊7C4, (Q8×C10)⋊4C4, Q8.7(C2×F5), Q8⋊F53C2, (C4×D5).41D4, C4⋊F5.8C22, D10.98(C2×D4), D5⋊C8.7C22, Dic5.8(C2×D4), C5⋊(C23.38D4), C4.18(C22×F5), (C2×Dic10)⋊12C4, C20.18(C22×C4), Dic10.8(C2×C4), D5⋊M4(2).5C2, (C4×D5).40C23, C4.17(C22⋊F5), (Q8×D5).11C22, C20.17(C22⋊C4), (C2×Dic5).122D4, (C22×D5).148D4, D5.4(C8.C22), D10.46(C22⋊C4), C22.28(C22⋊F5), Dic5.13(C22⋊C4), D10.C23.5C2, (C2×Q8×D5).10C2, (C2×C4).39(C2×F5), (C5×Q8).7(C2×C4), (C2×C20).60(C2×C4), (C4×D5).24(C2×C4), C2.27(C2×C22⋊F5), C10.26(C2×C22⋊C4), (C2×C4×D5).205C22, (C2×C10).58(C22⋊C4), SmallGroup(320,1120)

Series: Derived Chief Lower central Upper central

C1C20 — (C2×Q8)⋊4F5
C1C5C10D10C4×D5C4⋊F5D10.C23 — (C2×Q8)⋊4F5
C5C10C20 — (C2×Q8)⋊4F5
C1C2C2×C4C2×Q8

Generators and relations for (C2×Q8)⋊4F5
 G = < a,b,c,d | a10=b4=d4=1, c2=b2, ab=ba, ac=ca, dad-1=a3b2, cbc-1=b-1, bd=db, dcd-1=a5b-1c >

Subgroups: 602 in 150 conjugacy classes, 50 normal (30 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, Q8, Q8, C23, D5, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C2×Q8, C2×Q8, Dic5, Dic5, C20, C20, F5, D10, D10, C2×C10, Q8⋊C4, C42⋊C2, C2×M4(2), C22×Q8, C5⋊C8, Dic10, Dic10, C4×D5, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C5×Q8, C2×F5, C22×D5, C23.38D4, D5⋊C8, C4.F5, C4×F5, C4⋊F5, C22.F5, C22⋊F5, C2×Dic10, C2×Dic10, C2×C4×D5, C2×C4×D5, Q8×D5, Q8×D5, Q8×C10, Q8⋊F5, D5⋊M4(2), D10.C23, C2×Q8×D5, (C2×Q8)⋊4F5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, F5, C2×C22⋊C4, C8.C22, C2×F5, C23.38D4, C22⋊F5, C22×F5, C2×C22⋊F5, (C2×Q8)⋊4F5

Smallest permutation representation of (C2×Q8)⋊4F5
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 12 47 62)(2 13 48 63)(3 14 49 64)(4 15 50 65)(5 16 41 66)(6 17 42 67)(7 18 43 68)(8 19 44 69)(9 20 45 70)(10 11 46 61)(21 32 58 74)(22 33 59 75)(23 34 60 76)(24 35 51 77)(25 36 52 78)(26 37 53 79)(27 38 54 80)(28 39 55 71)(29 40 56 72)(30 31 57 73)
(1 24 47 51)(2 25 48 52)(3 26 49 53)(4 27 50 54)(5 28 41 55)(6 29 42 56)(7 30 43 57)(8 21 44 58)(9 22 45 59)(10 23 46 60)(11 76 61 34)(12 77 62 35)(13 78 63 36)(14 79 64 37)(15 80 65 38)(16 71 66 39)(17 72 67 40)(18 73 68 31)(19 74 69 32)(20 75 70 33)
(2 44 10 50)(3 5 9 7)(4 48 8 46)(6 42)(11 65 13 69)(14 16 20 18)(15 63 19 61)(17 67)(21 71 27 73)(22 36 26 34)(23 75 25 79)(24 40)(28 38 30 32)(29 77)(31 58 39 54)(33 52 37 60)(35 56)(41 45 43 49)(51 72)(53 76 59 78)(55 80 57 74)(64 66 70 68)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,12,47,62)(2,13,48,63)(3,14,49,64)(4,15,50,65)(5,16,41,66)(6,17,42,67)(7,18,43,68)(8,19,44,69)(9,20,45,70)(10,11,46,61)(21,32,58,74)(22,33,59,75)(23,34,60,76)(24,35,51,77)(25,36,52,78)(26,37,53,79)(27,38,54,80)(28,39,55,71)(29,40,56,72)(30,31,57,73), (1,24,47,51)(2,25,48,52)(3,26,49,53)(4,27,50,54)(5,28,41,55)(6,29,42,56)(7,30,43,57)(8,21,44,58)(9,22,45,59)(10,23,46,60)(11,76,61,34)(12,77,62,35)(13,78,63,36)(14,79,64,37)(15,80,65,38)(16,71,66,39)(17,72,67,40)(18,73,68,31)(19,74,69,32)(20,75,70,33), (2,44,10,50)(3,5,9,7)(4,48,8,46)(6,42)(11,65,13,69)(14,16,20,18)(15,63,19,61)(17,67)(21,71,27,73)(22,36,26,34)(23,75,25,79)(24,40)(28,38,30,32)(29,77)(31,58,39,54)(33,52,37,60)(35,56)(41,45,43,49)(51,72)(53,76,59,78)(55,80,57,74)(64,66,70,68)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,12,47,62)(2,13,48,63)(3,14,49,64)(4,15,50,65)(5,16,41,66)(6,17,42,67)(7,18,43,68)(8,19,44,69)(9,20,45,70)(10,11,46,61)(21,32,58,74)(22,33,59,75)(23,34,60,76)(24,35,51,77)(25,36,52,78)(26,37,53,79)(27,38,54,80)(28,39,55,71)(29,40,56,72)(30,31,57,73), (1,24,47,51)(2,25,48,52)(3,26,49,53)(4,27,50,54)(5,28,41,55)(6,29,42,56)(7,30,43,57)(8,21,44,58)(9,22,45,59)(10,23,46,60)(11,76,61,34)(12,77,62,35)(13,78,63,36)(14,79,64,37)(15,80,65,38)(16,71,66,39)(17,72,67,40)(18,73,68,31)(19,74,69,32)(20,75,70,33), (2,44,10,50)(3,5,9,7)(4,48,8,46)(6,42)(11,65,13,69)(14,16,20,18)(15,63,19,61)(17,67)(21,71,27,73)(22,36,26,34)(23,75,25,79)(24,40)(28,38,30,32)(29,77)(31,58,39,54)(33,52,37,60)(35,56)(41,45,43,49)(51,72)(53,76,59,78)(55,80,57,74)(64,66,70,68) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,12,47,62),(2,13,48,63),(3,14,49,64),(4,15,50,65),(5,16,41,66),(6,17,42,67),(7,18,43,68),(8,19,44,69),(9,20,45,70),(10,11,46,61),(21,32,58,74),(22,33,59,75),(23,34,60,76),(24,35,51,77),(25,36,52,78),(26,37,53,79),(27,38,54,80),(28,39,55,71),(29,40,56,72),(30,31,57,73)], [(1,24,47,51),(2,25,48,52),(3,26,49,53),(4,27,50,54),(5,28,41,55),(6,29,42,56),(7,30,43,57),(8,21,44,58),(9,22,45,59),(10,23,46,60),(11,76,61,34),(12,77,62,35),(13,78,63,36),(14,79,64,37),(15,80,65,38),(16,71,66,39),(17,72,67,40),(18,73,68,31),(19,74,69,32),(20,75,70,33)], [(2,44,10,50),(3,5,9,7),(4,48,8,46),(6,42),(11,65,13,69),(14,16,20,18),(15,63,19,61),(17,67),(21,71,27,73),(22,36,26,34),(23,75,25,79),(24,40),(28,38,30,32),(29,77),(31,58,39,54),(33,52,37,60),(35,56),(41,45,43,49),(51,72),(53,76,59,78),(55,80,57,74),(64,66,70,68)]])

32 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G···4L 5 8A8B8C8D10A10B10C20A···20F
order1222224444444···45888810101020···20
size11255102244101020···204202020204448···8

32 irreducible representations

dim111111112224444448
type+++++++++-++++-
imageC1C2C2C2C2C4C4C4D4D4D4F5C8.C22C2×F5C2×F5C22⋊F5C22⋊F5(C2×Q8)⋊4F5
kernel(C2×Q8)⋊4F5Q8⋊F5D5⋊M4(2)D10.C23C2×Q8×D5C2×Dic10Q8×D5Q8×C10C4×D5C2×Dic5C22×D5C2×Q8D5C2×C4Q8C4C22C1
# reps141112422111212222

Matrix representation of (C2×Q8)⋊4F5 in GL8(𝔽41)

040100000
040010000
040000000
140000000
0000034437
0000703737
0000374034
00004470
,
10000000
01000000
00100000
00010000
000034044
0000034437
00004470
000043707
,
10000000
01000000
00100000
00010000
0000374034
00004470
000007374
000034044
,
00100000
10000000
00010000
01000000
00009000
000003200
00000009
00000090

G:=sub<GL(8,GF(41))| [0,0,0,1,0,0,0,0,40,40,40,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,7,37,4,0,0,0,0,34,0,4,4,0,0,0,0,4,37,0,7,0,0,0,0,37,37,34,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,34,0,4,4,0,0,0,0,0,34,4,37,0,0,0,0,4,4,7,0,0,0,0,0,4,37,0,7],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,37,4,0,34,0,0,0,0,4,4,7,0,0,0,0,0,0,7,37,4,0,0,0,0,34,0,4,4],[0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0] >;

(C2×Q8)⋊4F5 in GAP, Magma, Sage, TeX

(C_2\times Q_8)\rtimes_4F_5
% in TeX

G:=Group("(C2xQ8):4F5");
// GroupNames label

G:=SmallGroup(320,1120);
// by ID

G=gap.SmallGroup(320,1120);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,422,387,184,1684,438,102,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^4=d^4=1,c^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^3*b^2,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=a^5*b^-1*c>;
// generators/relations

׿
×
𝔽