Extensions 1→N→G→Q→1 with N=Dic10 and Q=C8

Direct product G=N×Q with N=Dic10 and Q=C8
dρLabelID
C8×Dic10320C8xDic10320,305

Semidirect products G=N:Q with N=Dic10 and Q=C8
extensionφ:Q→Out NdρLabelID
Dic101C8 = Dic101C8φ: C8/C2C4 ⊆ Out Dic10320Dic10:1C8320,210
Dic102C8 = Dic10⋊C8φ: C8/C2C4 ⊆ Out Dic10320Dic10:2C8320,1041
Dic103C8 = Dic103C8φ: C8/C4C2 ⊆ Out Dic10320Dic10:3C8320,14
Dic104C8 = Dic104C8φ: C8/C4C2 ⊆ Out Dic10320Dic10:4C8320,42
Dic105C8 = Dic105C8φ: C8/C4C2 ⊆ Out Dic10320Dic10:5C8320,457

Non-split extensions G=N.Q with N=Dic10 and Q=C8
extensionφ:Q→Out NdρLabelID
Dic10.1C8 = D20.C8φ: C8/C2C4 ⊆ Out Dic101608Dic10.1C8320,236
Dic10.2C8 = Dic10.C8φ: C8/C2C4 ⊆ Out Dic101608Dic10.2C8320,1063
Dic10.3C8 = D20.3C8φ: C8/C4C2 ⊆ Out Dic101602Dic10.3C8320,66
Dic10.4C8 = D20.4C8φ: C8/C4C2 ⊆ Out Dic101604Dic10.4C8320,73
Dic10.5C8 = D20.5C8φ: C8/C4C2 ⊆ Out Dic101604Dic10.5C8320,534
Dic10.6C8 = D20.6C8φ: trivial image1602Dic10.6C8320,528

׿
×
𝔽