Extensions 1→N→G→Q→1 with N=C5×C2.D8 and Q=C2

Direct product G=N×Q with N=C5×C2.D8 and Q=C2
dρLabelID
C10×C2.D8320C10xC2.D8320,927

Semidirect products G=N:Q with N=C5×C2.D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×C2.D8)⋊1C2 = C40.5D4φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):1C2320,49
(C5×C2.D8)⋊2C2 = D4012C4φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):2C2320,499
(C5×C2.D8)⋊3C2 = D5×C2.D8φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):3C2320,506
(C5×C2.D8)⋊4C2 = C8.27(C4×D5)φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):4C2320,507
(C5×C2.D8)⋊5C2 = C87D20φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):5C2320,510
(C5×C2.D8)⋊6C2 = D102Q16φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):6C2320,514
(C5×C2.D8)⋊7C2 = C4020(C2×C4)φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):7C2320,508
(C5×C2.D8)⋊8C2 = C83D20φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):8C2320,513
(C5×C2.D8)⋊9C2 = C4021(C2×C4)φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):9C2320,516
(C5×C2.D8)⋊10C2 = C5×C2.D16φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):10C2320,162
(C5×C2.D8)⋊11C2 = D10.13D8φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):11C2320,509
(C5×C2.D8)⋊12C2 = D10.8Q16φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):12C2320,511
(C5×C2.D8)⋊13C2 = C2.D8⋊D5φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):13C2320,512
(C5×C2.D8)⋊14C2 = C2.D87D5φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):14C2320,515
(C5×C2.D8)⋊15C2 = D202Q8φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):15C2320,517
(C5×C2.D8)⋊16C2 = D20.2Q8φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):16C2320,518
(C5×C2.D8)⋊17C2 = C5×C87D4φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):17C2320,967
(C5×C2.D8)⋊18C2 = C5×C8.18D4φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):18C2320,968
(C5×C2.D8)⋊19C2 = C5×D4⋊Q8φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):19C2320,975
(C5×C2.D8)⋊20C2 = C5×D4.Q8φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):20C2320,979
(C5×C2.D8)⋊21C2 = C5×C22.D8φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):21C2320,981
(C5×C2.D8)⋊22C2 = C5×C23.19D4φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):22C2320,983
(C5×C2.D8)⋊23C2 = C5×C23.48D4φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):23C2320,985
(C5×C2.D8)⋊24C2 = C5×C23.20D4φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):24C2320,986
(C5×C2.D8)⋊25C2 = C5×M4(2)⋊C4φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):25C2320,929
(C5×C2.D8)⋊26C2 = C5×SD16⋊C4φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):26C2320,941
(C5×C2.D8)⋊27C2 = C5×C8⋊D4φ: C2/C1C2 ⊆ Out C5×C2.D8160(C5xC2.D8):27C2320,969
(C5×C2.D8)⋊28C2 = C5×C23.25D4φ: trivial image160(C5xC2.D8):28C2320,928
(C5×C2.D8)⋊29C2 = D8×C20φ: trivial image160(C5xC2.D8):29C2320,938

Non-split extensions G=N.Q with N=C5×C2.D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×C2.D8).1C2 = C40.2Q8φ: C2/C1C2 ⊆ Out C5×C2.D8320(C5xC2.D8).1C2320,47
(C5×C2.D8).2C2 = C10.SD32φ: C2/C1C2 ⊆ Out C5×C2.D8320(C5xC2.D8).2C2320,48
(C5×C2.D8).3C2 = C10.Q32φ: C2/C1C2 ⊆ Out C5×C2.D8320(C5xC2.D8).3C2320,50
(C5×C2.D8).4C2 = Dic55Q16φ: C2/C1C2 ⊆ Out C5×C2.D8320(C5xC2.D8).4C2320,500
(C5×C2.D8).5C2 = C402Q8φ: C2/C1C2 ⊆ Out C5×C2.D8320(C5xC2.D8).5C2320,501
(C5×C2.D8).6C2 = C8.6Dic10φ: C2/C1C2 ⊆ Out C5×C2.D8320(C5xC2.D8).6C2320,505
(C5×C2.D8).7C2 = C404Q8φ: C2/C1C2 ⊆ Out C5×C2.D8320(C5xC2.D8).7C2320,503
(C5×C2.D8).8C2 = C5×C2.Q32φ: C2/C1C2 ⊆ Out C5×C2.D8320(C5xC2.D8).8C2320,163
(C5×C2.D8).9C2 = C5×C163C4φ: C2/C1C2 ⊆ Out C5×C2.D8320(C5xC2.D8).9C2320,171
(C5×C2.D8).10C2 = C5×C164C4φ: C2/C1C2 ⊆ Out C5×C2.D8320(C5xC2.D8).10C2320,172
(C5×C2.D8).11C2 = Dic102Q8φ: C2/C1C2 ⊆ Out C5×C2.D8320(C5xC2.D8).11C2320,502
(C5×C2.D8).12C2 = Dic10.2Q8φ: C2/C1C2 ⊆ Out C5×C2.D8320(C5xC2.D8).12C2320,504
(C5×C2.D8).13C2 = C5×C4.Q16φ: C2/C1C2 ⊆ Out C5×C2.D8320(C5xC2.D8).13C2320,978
(C5×C2.D8).14C2 = C5×Q8.Q8φ: C2/C1C2 ⊆ Out C5×C2.D8320(C5xC2.D8).14C2320,980
(C5×C2.D8).15C2 = C5×C8.5Q8φ: C2/C1C2 ⊆ Out C5×C2.D8320(C5xC2.D8).15C2320,1000
(C5×C2.D8).16C2 = C5×C82Q8φ: C2/C1C2 ⊆ Out C5×C2.D8320(C5xC2.D8).16C2320,1001
(C5×C2.D8).17C2 = C5×C8⋊Q8φ: C2/C1C2 ⊆ Out C5×C2.D8320(C5xC2.D8).17C2320,1002
(C5×C2.D8).18C2 = Q16×C20φ: trivial image320(C5xC2.D8).18C2320,940

׿
×
𝔽