Copied to
clipboard

G = D4012C4order 320 = 26·5

6th semidirect product of D40 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4012C4, Dic55D8, C54(C4×D8), C87(C4×D5), C2.3(D5×D8), C4014(C2×C4), D2017(C2×C4), C2.D813D5, (C8×Dic5)⋊3C2, (C2×D40).9C2, C10.82(C4×D4), C10.26(C2×D8), D208C47C2, C4⋊C4.166D10, (C2×C8).225D10, D206C419C2, C22.87(D4×D5), C20.35(C4○D4), C10.73(C4○D8), (C2×C40).77C22, C4.7(Q82D5), C2.3(Q8.D10), C20.105(C22×C4), (C2×C20).288C23, (C2×Dic5).275D4, (C2×D20).84C22, C2.12(D208C4), (C4×Dic5).262C22, C4.43(C2×C4×D5), (C5×C2.D8)⋊2C2, (C2×C10).293(C2×D4), (C5×C4⋊C4).81C22, (C2×C4).391(C22×D5), (C2×C52C8).237C22, SmallGroup(320,499)

Series: Derived Chief Lower central Upper central

C1C20 — D4012C4
C1C5C10C20C2×C20C4×Dic5D208C4 — D4012C4
C5C10C20 — D4012C4
C1C22C2×C4C2.D8

Generators and relations for D4012C4
 G = < a,b,c | a40=b2=c4=1, bab=a-1, cac-1=a31, cbc-1=a30b >

Subgroups: 646 in 134 conjugacy classes, 51 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, Dic5, Dic5, C20, C20, D10, C2×C10, C4×C8, D4⋊C4, C2.D8, C4×D4, C2×D8, C52C8, C40, C4×D5, D20, D20, C2×Dic5, C2×C20, C2×C20, C22×D5, C4×D8, D40, C2×C52C8, C4×Dic5, D10⋊C4, C5×C4⋊C4, C2×C40, C2×C4×D5, C2×D20, D206C4, C8×Dic5, C5×C2.D8, D208C4, C2×D40, D4012C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, D8, C22×C4, C2×D4, C4○D4, D10, C4×D4, C2×D8, C4○D8, C4×D5, C22×D5, C4×D8, C2×C4×D5, D4×D5, Q82D5, D208C4, D5×D8, Q8.D10, D4012C4

Smallest permutation representation of D4012C4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 25)(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(26 40)(27 39)(28 38)(29 37)(30 36)(31 35)(32 34)(41 57)(42 56)(43 55)(44 54)(45 53)(46 52)(47 51)(48 50)(58 80)(59 79)(60 78)(61 77)(62 76)(63 75)(64 74)(65 73)(66 72)(67 71)(68 70)(81 119)(82 118)(83 117)(84 116)(85 115)(86 114)(87 113)(88 112)(89 111)(90 110)(91 109)(92 108)(93 107)(94 106)(95 105)(96 104)(97 103)(98 102)(99 101)(121 155)(122 154)(123 153)(124 152)(125 151)(126 150)(127 149)(128 148)(129 147)(130 146)(131 145)(132 144)(133 143)(134 142)(135 141)(136 140)(137 139)(156 160)(157 159)
(1 113 57 151)(2 104 58 142)(3 95 59 133)(4 86 60 124)(5 117 61 155)(6 108 62 146)(7 99 63 137)(8 90 64 128)(9 81 65 159)(10 112 66 150)(11 103 67 141)(12 94 68 132)(13 85 69 123)(14 116 70 154)(15 107 71 145)(16 98 72 136)(17 89 73 127)(18 120 74 158)(19 111 75 149)(20 102 76 140)(21 93 77 131)(22 84 78 122)(23 115 79 153)(24 106 80 144)(25 97 41 135)(26 88 42 126)(27 119 43 157)(28 110 44 148)(29 101 45 139)(30 92 46 130)(31 83 47 121)(32 114 48 152)(33 105 49 143)(34 96 50 134)(35 87 51 125)(36 118 52 156)(37 109 53 147)(38 100 54 138)(39 91 55 129)(40 82 56 160)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(26,40)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)(41,57)(42,56)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50)(58,80)(59,79)(60,78)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)(81,119)(82,118)(83,117)(84,116)(85,115)(86,114)(87,113)(88,112)(89,111)(90,110)(91,109)(92,108)(93,107)(94,106)(95,105)(96,104)(97,103)(98,102)(99,101)(121,155)(122,154)(123,153)(124,152)(125,151)(126,150)(127,149)(128,148)(129,147)(130,146)(131,145)(132,144)(133,143)(134,142)(135,141)(136,140)(137,139)(156,160)(157,159), (1,113,57,151)(2,104,58,142)(3,95,59,133)(4,86,60,124)(5,117,61,155)(6,108,62,146)(7,99,63,137)(8,90,64,128)(9,81,65,159)(10,112,66,150)(11,103,67,141)(12,94,68,132)(13,85,69,123)(14,116,70,154)(15,107,71,145)(16,98,72,136)(17,89,73,127)(18,120,74,158)(19,111,75,149)(20,102,76,140)(21,93,77,131)(22,84,78,122)(23,115,79,153)(24,106,80,144)(25,97,41,135)(26,88,42,126)(27,119,43,157)(28,110,44,148)(29,101,45,139)(30,92,46,130)(31,83,47,121)(32,114,48,152)(33,105,49,143)(34,96,50,134)(35,87,51,125)(36,118,52,156)(37,109,53,147)(38,100,54,138)(39,91,55,129)(40,82,56,160)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(26,40)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)(41,57)(42,56)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50)(58,80)(59,79)(60,78)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)(81,119)(82,118)(83,117)(84,116)(85,115)(86,114)(87,113)(88,112)(89,111)(90,110)(91,109)(92,108)(93,107)(94,106)(95,105)(96,104)(97,103)(98,102)(99,101)(121,155)(122,154)(123,153)(124,152)(125,151)(126,150)(127,149)(128,148)(129,147)(130,146)(131,145)(132,144)(133,143)(134,142)(135,141)(136,140)(137,139)(156,160)(157,159), (1,113,57,151)(2,104,58,142)(3,95,59,133)(4,86,60,124)(5,117,61,155)(6,108,62,146)(7,99,63,137)(8,90,64,128)(9,81,65,159)(10,112,66,150)(11,103,67,141)(12,94,68,132)(13,85,69,123)(14,116,70,154)(15,107,71,145)(16,98,72,136)(17,89,73,127)(18,120,74,158)(19,111,75,149)(20,102,76,140)(21,93,77,131)(22,84,78,122)(23,115,79,153)(24,106,80,144)(25,97,41,135)(26,88,42,126)(27,119,43,157)(28,110,44,148)(29,101,45,139)(30,92,46,130)(31,83,47,121)(32,114,48,152)(33,105,49,143)(34,96,50,134)(35,87,51,125)(36,118,52,156)(37,109,53,147)(38,100,54,138)(39,91,55,129)(40,82,56,160) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,25),(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(26,40),(27,39),(28,38),(29,37),(30,36),(31,35),(32,34),(41,57),(42,56),(43,55),(44,54),(45,53),(46,52),(47,51),(48,50),(58,80),(59,79),(60,78),(61,77),(62,76),(63,75),(64,74),(65,73),(66,72),(67,71),(68,70),(81,119),(82,118),(83,117),(84,116),(85,115),(86,114),(87,113),(88,112),(89,111),(90,110),(91,109),(92,108),(93,107),(94,106),(95,105),(96,104),(97,103),(98,102),(99,101),(121,155),(122,154),(123,153),(124,152),(125,151),(126,150),(127,149),(128,148),(129,147),(130,146),(131,145),(132,144),(133,143),(134,142),(135,141),(136,140),(137,139),(156,160),(157,159)], [(1,113,57,151),(2,104,58,142),(3,95,59,133),(4,86,60,124),(5,117,61,155),(6,108,62,146),(7,99,63,137),(8,90,64,128),(9,81,65,159),(10,112,66,150),(11,103,67,141),(12,94,68,132),(13,85,69,123),(14,116,70,154),(15,107,71,145),(16,98,72,136),(17,89,73,127),(18,120,74,158),(19,111,75,149),(20,102,76,140),(21,93,77,131),(22,84,78,122),(23,115,79,153),(24,106,80,144),(25,97,41,135),(26,88,42,126),(27,119,43,157),(28,110,44,148),(29,101,45,139),(30,92,46,130),(31,83,47,121),(32,114,48,152),(33,105,49,143),(34,96,50,134),(35,87,51,125),(36,118,52,156),(37,109,53,147),(38,100,54,138),(39,91,55,129),(40,82,56,160)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L5A5B8A8B8C8D8E8F8G8H10A···10F20A20B20C20D20E···20L40A···40H
order12222222444444444444558888888810···102020202020···2040···40
size11112020202022444455551010222222101010102···244448···84···4

56 irreducible representations

dim1111111222222224444
type+++++++++++++++
imageC1C2C2C2C2C2C4D4D5D8C4○D4D10D10C4○D8C4×D5Q82D5D4×D5D5×D8Q8.D10
kernelD4012C4D206C4C8×Dic5C5×C2.D8D208C4C2×D40D40C2×Dic5C2.D8Dic5C20C4⋊C4C2×C8C10C8C4C22C2C2
# reps1211218224242482244

Matrix representation of D4012C4 in GL4(𝔽41) generated by

343400
7100
00017
001217
,
403400
0100
0010
00140
,
9000
0900
003011
001511
G:=sub<GL(4,GF(41))| [34,7,0,0,34,1,0,0,0,0,0,12,0,0,17,17],[40,0,0,0,34,1,0,0,0,0,1,1,0,0,0,40],[9,0,0,0,0,9,0,0,0,0,30,15,0,0,11,11] >;

D4012C4 in GAP, Magma, Sage, TeX

D_{40}\rtimes_{12}C_4
% in TeX

G:=Group("D40:12C4");
// GroupNames label

G:=SmallGroup(320,499);
// by ID

G=gap.SmallGroup(320,499);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,120,135,100,570,297,136,12550]);
// Polycyclic

G:=Group<a,b,c|a^40=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^31,c*b*c^-1=a^30*b>;
// generators/relations

׿
×
𝔽