Copied to
clipboard

G = C40.5D4order 320 = 26·5

5th non-split extension by C40 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C40.5D4, D4011C4, C10.7D16, C8.15D20, C10.7SD32, C20.4SD16, C2.D81D5, C8.12(C4×D5), C52(C2.D16), C40.50(C2×C4), (C2×D40).8C2, (C2×C10).33D8, (C2×C20).91D4, C4.1(Q8⋊D5), (C2×C8).221D10, C2.2(C5⋊D16), (C2×C40).73C22, C2.2(C5⋊SD32), C2.7(D206C4), C4.2(D10⋊C4), C20.49(C22⋊C4), C22.14(D4⋊D5), C10.20(D4⋊C4), (C5×C2.D8)⋊1C2, (C2×C52C16)⋊4C2, (C2×C4).115(C5⋊D4), SmallGroup(320,49)

Series: Derived Chief Lower central Upper central

C1C40 — C40.5D4
C1C5C10C20C2×C20C2×C40C2×D40 — C40.5D4
C5C10C20C40 — C40.5D4
C1C22C2×C4C2×C8C2.D8

Generators and relations for C40.5D4
 G = < a,b,c | a40=b4=1, c2=a25, bab-1=a31, cac-1=a9, cbc-1=a25b-1 >

Subgroups: 430 in 66 conjugacy classes, 29 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, D5, C10, C16, C4⋊C4, C2×C8, D8, C2×D4, C20, C20, D10, C2×C10, C2.D8, C2×C16, C2×D8, C40, D20, C2×C20, C2×C20, C22×D5, C2.D16, C52C16, D40, D40, C5×C4⋊C4, C2×C40, C2×D20, C2×C52C16, C5×C2.D8, C2×D40, C40.5D4
Quotients: C1, C2, C4, C22, C2×C4, D4, D5, C22⋊C4, D8, SD16, D10, D4⋊C4, D16, SD32, C4×D5, D20, C5⋊D4, C2.D16, D10⋊C4, D4⋊D5, Q8⋊D5, D206C4, C5⋊D16, C5⋊SD32, C40.5D4

Smallest permutation representation of C40.5D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 106 137 43)(2 97 138 74)(3 88 139 65)(4 119 140 56)(5 110 141 47)(6 101 142 78)(7 92 143 69)(8 83 144 60)(9 114 145 51)(10 105 146 42)(11 96 147 73)(12 87 148 64)(13 118 149 55)(14 109 150 46)(15 100 151 77)(16 91 152 68)(17 82 153 59)(18 113 154 50)(19 104 155 41)(20 95 156 72)(21 86 157 63)(22 117 158 54)(23 108 159 45)(24 99 160 76)(25 90 121 67)(26 81 122 58)(27 112 123 49)(28 103 124 80)(29 94 125 71)(30 85 126 62)(31 116 127 53)(32 107 128 44)(33 98 129 75)(34 89 130 66)(35 120 131 57)(36 111 132 48)(37 102 133 79)(38 93 134 70)(39 84 135 61)(40 115 136 52)
(1 68 26 53 11 78 36 63 21 48 6 73 31 58 16 43)(2 77 27 62 12 47 37 72 22 57 7 42 32 67 17 52)(3 46 28 71 13 56 38 41 23 66 8 51 33 76 18 61)(4 55 29 80 14 65 39 50 24 75 9 60 34 45 19 70)(5 64 30 49 15 74 40 59 25 44 10 69 35 54 20 79)(81 152 106 137 91 122 116 147 101 132 86 157 111 142 96 127)(82 121 107 146 92 131 117 156 102 141 87 126 112 151 97 136)(83 130 108 155 93 140 118 125 103 150 88 135 113 160 98 145)(84 139 109 124 94 149 119 134 104 159 89 144 114 129 99 154)(85 148 110 133 95 158 120 143 105 128 90 153 115 138 100 123)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,106,137,43)(2,97,138,74)(3,88,139,65)(4,119,140,56)(5,110,141,47)(6,101,142,78)(7,92,143,69)(8,83,144,60)(9,114,145,51)(10,105,146,42)(11,96,147,73)(12,87,148,64)(13,118,149,55)(14,109,150,46)(15,100,151,77)(16,91,152,68)(17,82,153,59)(18,113,154,50)(19,104,155,41)(20,95,156,72)(21,86,157,63)(22,117,158,54)(23,108,159,45)(24,99,160,76)(25,90,121,67)(26,81,122,58)(27,112,123,49)(28,103,124,80)(29,94,125,71)(30,85,126,62)(31,116,127,53)(32,107,128,44)(33,98,129,75)(34,89,130,66)(35,120,131,57)(36,111,132,48)(37,102,133,79)(38,93,134,70)(39,84,135,61)(40,115,136,52), (1,68,26,53,11,78,36,63,21,48,6,73,31,58,16,43)(2,77,27,62,12,47,37,72,22,57,7,42,32,67,17,52)(3,46,28,71,13,56,38,41,23,66,8,51,33,76,18,61)(4,55,29,80,14,65,39,50,24,75,9,60,34,45,19,70)(5,64,30,49,15,74,40,59,25,44,10,69,35,54,20,79)(81,152,106,137,91,122,116,147,101,132,86,157,111,142,96,127)(82,121,107,146,92,131,117,156,102,141,87,126,112,151,97,136)(83,130,108,155,93,140,118,125,103,150,88,135,113,160,98,145)(84,139,109,124,94,149,119,134,104,159,89,144,114,129,99,154)(85,148,110,133,95,158,120,143,105,128,90,153,115,138,100,123)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,106,137,43)(2,97,138,74)(3,88,139,65)(4,119,140,56)(5,110,141,47)(6,101,142,78)(7,92,143,69)(8,83,144,60)(9,114,145,51)(10,105,146,42)(11,96,147,73)(12,87,148,64)(13,118,149,55)(14,109,150,46)(15,100,151,77)(16,91,152,68)(17,82,153,59)(18,113,154,50)(19,104,155,41)(20,95,156,72)(21,86,157,63)(22,117,158,54)(23,108,159,45)(24,99,160,76)(25,90,121,67)(26,81,122,58)(27,112,123,49)(28,103,124,80)(29,94,125,71)(30,85,126,62)(31,116,127,53)(32,107,128,44)(33,98,129,75)(34,89,130,66)(35,120,131,57)(36,111,132,48)(37,102,133,79)(38,93,134,70)(39,84,135,61)(40,115,136,52), (1,68,26,53,11,78,36,63,21,48,6,73,31,58,16,43)(2,77,27,62,12,47,37,72,22,57,7,42,32,67,17,52)(3,46,28,71,13,56,38,41,23,66,8,51,33,76,18,61)(4,55,29,80,14,65,39,50,24,75,9,60,34,45,19,70)(5,64,30,49,15,74,40,59,25,44,10,69,35,54,20,79)(81,152,106,137,91,122,116,147,101,132,86,157,111,142,96,127)(82,121,107,146,92,131,117,156,102,141,87,126,112,151,97,136)(83,130,108,155,93,140,118,125,103,150,88,135,113,160,98,145)(84,139,109,124,94,149,119,134,104,159,89,144,114,129,99,154)(85,148,110,133,95,158,120,143,105,128,90,153,115,138,100,123) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,106,137,43),(2,97,138,74),(3,88,139,65),(4,119,140,56),(5,110,141,47),(6,101,142,78),(7,92,143,69),(8,83,144,60),(9,114,145,51),(10,105,146,42),(11,96,147,73),(12,87,148,64),(13,118,149,55),(14,109,150,46),(15,100,151,77),(16,91,152,68),(17,82,153,59),(18,113,154,50),(19,104,155,41),(20,95,156,72),(21,86,157,63),(22,117,158,54),(23,108,159,45),(24,99,160,76),(25,90,121,67),(26,81,122,58),(27,112,123,49),(28,103,124,80),(29,94,125,71),(30,85,126,62),(31,116,127,53),(32,107,128,44),(33,98,129,75),(34,89,130,66),(35,120,131,57),(36,111,132,48),(37,102,133,79),(38,93,134,70),(39,84,135,61),(40,115,136,52)], [(1,68,26,53,11,78,36,63,21,48,6,73,31,58,16,43),(2,77,27,62,12,47,37,72,22,57,7,42,32,67,17,52),(3,46,28,71,13,56,38,41,23,66,8,51,33,76,18,61),(4,55,29,80,14,65,39,50,24,75,9,60,34,45,19,70),(5,64,30,49,15,74,40,59,25,44,10,69,35,54,20,79),(81,152,106,137,91,122,116,147,101,132,86,157,111,142,96,127),(82,121,107,146,92,131,117,156,102,141,87,126,112,151,97,136),(83,130,108,155,93,140,118,125,103,150,88,135,113,160,98,145),(84,139,109,124,94,149,119,134,104,159,89,144,114,129,99,154),(85,148,110,133,95,158,120,143,105,128,90,153,115,138,100,123)]])

50 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D5A5B8A8B8C8D10A···10F16A···16H20A20B20C20D20E···20L40A···40H
order122222444455888810···1016···162020202020···2040···40
size1111404022882222222···210···1044448···84···4

50 irreducible representations

dim11111222222222224444
type+++++++++++++++
imageC1C2C2C2C4D4D4D5SD16D8D10D16SD32C4×D5D20C5⋊D4Q8⋊D5D4⋊D5C5⋊D16C5⋊SD32
kernelC40.5D4C2×C52C16C5×C2.D8C2×D40D40C40C2×C20C2.D8C20C2×C10C2×C8C10C10C8C8C2×C4C4C22C2C2
# reps11114112222444442244

Matrix representation of C40.5D4 in GL6(𝔽241)

112300000
11110000
001123000
00111100
000019052
00001900
,
1032000000
2001380000
00852700
002715600
0000165103
00008976
,
1032000000
411030000
002715600
00852700
00006927
000020172

G:=sub<GL(6,GF(241))| [11,11,0,0,0,0,230,11,0,0,0,0,0,0,11,11,0,0,0,0,230,11,0,0,0,0,0,0,190,190,0,0,0,0,52,0],[103,200,0,0,0,0,200,138,0,0,0,0,0,0,85,27,0,0,0,0,27,156,0,0,0,0,0,0,165,89,0,0,0,0,103,76],[103,41,0,0,0,0,200,103,0,0,0,0,0,0,27,85,0,0,0,0,156,27,0,0,0,0,0,0,69,20,0,0,0,0,27,172] >;

C40.5D4 in GAP, Magma, Sage, TeX

C_{40}._5D_4
% in TeX

G:=Group("C40.5D4");
// GroupNames label

G:=SmallGroup(320,49);
// by ID

G=gap.SmallGroup(320,49);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,141,36,675,346,192,1684,851,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^40=b^4=1,c^2=a^25,b*a*b^-1=a^31,c*a*c^-1=a^9,c*b*c^-1=a^25*b^-1>;
// generators/relations

׿
×
𝔽