extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC4).1Dic10 = (C2xC20).Q8 | φ: Dic10/C10 → C22 ⊆ Aut C2xC4 | 160 | | (C2xC4).1Dic10 | 320,88 |
(C2xC4).2Dic10 = C42:1Dic5 | φ: Dic10/C10 → C22 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).2Dic10 | 320,89 |
(C2xC4).3Dic10 = C20.60(C4:C4) | φ: Dic10/C10 → C22 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).3Dic10 | 320,91 |
(C2xC4).4Dic10 = M4(2):Dic5 | φ: Dic10/C10 → C22 ⊆ Aut C2xC4 | 160 | | (C2xC4).4Dic10 | 320,112 |
(C2xC4).5Dic10 = (C2xC40):C4 | φ: Dic10/C10 → C22 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).5Dic10 | 320,114 |
(C2xC4).6Dic10 = C23.9D20 | φ: Dic10/C10 → C22 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).6Dic10 | 320,115 |
(C2xC4).7Dic10 = M4(2):4Dic5 | φ: Dic10/C10 → C22 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).7Dic10 | 320,117 |
(C2xC4).8Dic10 = C2.(C20:Q8) | φ: Dic10/C10 → C22 ⊆ Aut C2xC4 | 320 | | (C2xC4).8Dic10 | 320,284 |
(C2xC4).9Dic10 = (C2xC4).Dic10 | φ: Dic10/C10 → C22 ⊆ Aut C2xC4 | 320 | | (C2xC4).9Dic10 | 320,287 |
(C2xC4).10Dic10 = C10.(C4:Q8) | φ: Dic10/C10 → C22 ⊆ Aut C2xC4 | 320 | | (C2xC4).10Dic10 | 320,288 |
(C2xC4).11Dic10 = C20.47(C4:C4) | φ: Dic10/C10 → C22 ⊆ Aut C2xC4 | 160 | | (C2xC4).11Dic10 | 320,591 |
(C2xC4).12Dic10 = (C2xC20).54D4 | φ: Dic10/C10 → C22 ⊆ Aut C2xC4 | 320 | | (C2xC4).12Dic10 | 320,611 |
(C2xC4).13Dic10 = (C2xC20).55D4 | φ: Dic10/C10 → C22 ⊆ Aut C2xC4 | 320 | | (C2xC4).13Dic10 | 320,613 |
(C2xC4).14Dic10 = C20.64(C4:C4) | φ: Dic10/C10 → C22 ⊆ Aut C2xC4 | 160 | | (C2xC4).14Dic10 | 320,622 |
(C2xC4).15Dic10 = C23.47D20 | φ: Dic10/C10 → C22 ⊆ Aut C2xC4 | 160 | | (C2xC4).15Dic10 | 320,748 |
(C2xC4).16Dic10 = C23.Dic10 | φ: Dic10/C10 → C22 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).16Dic10 | 320,751 |
(C2xC4).17Dic10 = M4(2).Dic5 | φ: Dic10/C10 → C22 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).17Dic10 | 320,752 |
(C2xC4).18Dic10 = C20.53D8 | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).18Dic10 | 320,37 |
(C2xC4).19Dic10 = C20.39SD16 | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).19Dic10 | 320,38 |
(C2xC4).20Dic10 = C10.49(C4xD4) | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).20Dic10 | 320,274 |
(C2xC4).21Dic10 = C4:Dic5:15C4 | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).21Dic10 | 320,281 |
(C2xC4).22Dic10 = C10.52(C4xD4) | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).22Dic10 | 320,282 |
(C2xC4).23Dic10 = C20.31C42 | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).23Dic10 | 320,87 |
(C2xC4).24Dic10 = C20.32C42 | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 80 | | (C2xC4).24Dic10 | 320,90 |
(C2xC4).25Dic10 = C20.33C42 | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 80 | | (C2xC4).25Dic10 | 320,113 |
(C2xC4).26Dic10 = C2xC10.D8 | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).26Dic10 | 320,589 |
(C2xC4).27Dic10 = C2xC20.Q8 | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).27Dic10 | 320,590 |
(C2xC4).28Dic10 = C20:4(C4:C4) | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).28Dic10 | 320,600 |
(C2xC4).29Dic10 = C20:5(C4:C4) | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).29Dic10 | 320,603 |
(C2xC4).30Dic10 = C20.48(C4:C4) | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).30Dic10 | 320,604 |
(C2xC4).31Dic10 = C20:6(C4:C4) | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).31Dic10 | 320,612 |
(C2xC4).32Dic10 = C20.76(C4:C4) | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).32Dic10 | 320,625 |
(C2xC4).33Dic10 = C42.43D10 | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).33Dic10 | 320,626 |
(C2xC4).34Dic10 = Dic5:5M4(2) | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).34Dic10 | 320,745 |
(C2xC4).35Dic10 = C20.51(C4:C4) | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).35Dic10 | 320,746 |
(C2xC4).36Dic10 = C2xC20.53D4 | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).36Dic10 | 320,750 |
(C2xC4).37Dic10 = C2xC4.Dic10 | φ: Dic10/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).37Dic10 | 320,1171 |
(C2xC4).38Dic10 = C40:6C8 | φ: Dic10/C20 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).38Dic10 | 320,15 |
(C2xC4).39Dic10 = C40:5C8 | φ: Dic10/C20 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).39Dic10 | 320,16 |
(C2xC4).40Dic10 = C20:7(C4:C4) | φ: Dic10/C20 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).40Dic10 | 320,555 |
(C2xC4).41Dic10 = C10.92(C4xD4) | φ: Dic10/C20 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).41Dic10 | 320,560 |
(C2xC4).42Dic10 = C42:6Dic5 | φ: Dic10/C20 → C2 ⊆ Aut C2xC4 | 80 | | (C2xC4).42Dic10 | 320,81 |
(C2xC4).43Dic10 = C20.39C42 | φ: Dic10/C20 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).43Dic10 | 320,109 |
(C2xC4).44Dic10 = C20:13M4(2) | φ: Dic10/C20 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).44Dic10 | 320,551 |
(C2xC4).45Dic10 = C42:8Dic5 | φ: Dic10/C20 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).45Dic10 | 320,562 |
(C2xC4).46Dic10 = C42:9Dic5 | φ: Dic10/C20 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).46Dic10 | 320,563 |
(C2xC4).47Dic10 = C20.65(C4:C4) | φ: Dic10/C20 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).47Dic10 | 320,729 |
(C2xC4).48Dic10 = C2xC40:6C4 | φ: Dic10/C20 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).48Dic10 | 320,731 |
(C2xC4).49Dic10 = C2xC40:5C4 | φ: Dic10/C20 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).49Dic10 | 320,732 |
(C2xC4).50Dic10 = C23.22D20 | φ: Dic10/C20 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).50Dic10 | 320,733 |
(C2xC4).51Dic10 = C2xC40.6C4 | φ: Dic10/C20 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).51Dic10 | 320,734 |
(C2xC4).52Dic10 = C2xC20.6Q8 | φ: Dic10/C20 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).52Dic10 | 320,1141 |
(C2xC4).53Dic10 = (C2xC20):8C8 | central extension (φ=1) | 320 | | (C2xC4).53Dic10 | 320,82 |
(C2xC4).54Dic10 = (C2xC40):15C4 | central extension (φ=1) | 320 | | (C2xC4).54Dic10 | 320,108 |
(C2xC4).55Dic10 = C2xC20:3C8 | central extension (φ=1) | 320 | | (C2xC4).55Dic10 | 320,550 |
(C2xC4).56Dic10 = C4xC10.D4 | central extension (φ=1) | 320 | | (C2xC4).56Dic10 | 320,558 |
(C2xC4).57Dic10 = C4xC4:Dic5 | central extension (φ=1) | 320 | | (C2xC4).57Dic10 | 320,561 |
(C2xC4).58Dic10 = C2xC20.8Q8 | central extension (φ=1) | 320 | | (C2xC4).58Dic10 | 320,726 |