metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C20.51(C4⋊C4), (C2×C20).25Q8, C20.88(C2×Q8), (C2×C20).165D4, (C2×C8).186D10, C20.439(C2×D4), C4⋊Dic5.32C4, C23.27(C4×D5), C10.54(C8○D4), C20.8Q8⋊39C2, C4.53(C2×Dic10), (C2×C4).35Dic10, C23.D5.17C4, (C2×C40).316C22, (C2×C20).864C23, (C22×C4).346D10, (C2×M4(2)).13D5, C4.19(C10.D4), (C10×M4(2)).24C2, C5⋊6(C42.6C22), C2.16(D20.2C4), (C22×C20).178C22, (C4×Dic5).208C22, C23.21D10.15C2, C22.11(C10.D4), C10.72(C2×C4⋊C4), (C2×C4).82(C4×D5), C4.129(C2×C5⋊D4), (C2×C10).43(C4⋊C4), C22.144(C2×C4×D5), (C2×C20).271(C2×C4), (C2×C4).193(C5⋊D4), (C22×C5⋊2C8).10C2, (C2×Dic5).35(C2×C4), C2.17(C2×C10.D4), (C2×C4).806(C22×D5), (C2×C10).235(C22×C4), (C22×C10).132(C2×C4), (C2×C5⋊2C8).330C22, SmallGroup(320,746)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C20.51(C4⋊C4)
G = < a,b,c | a20=b4=1, c4=a10, bab-1=a-1, cac-1=a11, cbc-1=a10b-1 >
Subgroups: 286 in 114 conjugacy classes, 63 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, C23, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C4⋊C8, C42⋊C2, C22×C8, C2×M4(2), C5⋊2C8, C40, C2×Dic5, C2×C20, C2×C20, C22×C10, C42.6C22, C2×C5⋊2C8, C2×C5⋊2C8, C4×Dic5, C4⋊Dic5, C23.D5, C2×C40, C5×M4(2), C22×C20, C20.8Q8, C22×C5⋊2C8, C23.21D10, C10×M4(2), C20.51(C4⋊C4)
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D5, C4⋊C4, C22×C4, C2×D4, C2×Q8, D10, C2×C4⋊C4, C8○D4, Dic10, C4×D5, C5⋊D4, C22×D5, C42.6C22, C10.D4, C2×Dic10, C2×C4×D5, C2×C5⋊D4, D20.2C4, C2×C10.D4, C20.51(C4⋊C4)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 61 158 140)(2 80 159 139)(3 79 160 138)(4 78 141 137)(5 77 142 136)(6 76 143 135)(7 75 144 134)(8 74 145 133)(9 73 146 132)(10 72 147 131)(11 71 148 130)(12 70 149 129)(13 69 150 128)(14 68 151 127)(15 67 152 126)(16 66 153 125)(17 65 154 124)(18 64 155 123)(19 63 156 122)(20 62 157 121)(21 45 93 115)(22 44 94 114)(23 43 95 113)(24 42 96 112)(25 41 97 111)(26 60 98 110)(27 59 99 109)(28 58 100 108)(29 57 81 107)(30 56 82 106)(31 55 83 105)(32 54 84 104)(33 53 85 103)(34 52 86 102)(35 51 87 101)(36 50 88 120)(37 49 89 119)(38 48 90 118)(39 47 91 117)(40 46 92 116)
(1 25 6 40 11 35 16 30)(2 36 7 31 12 26 17 21)(3 27 8 22 13 37 18 32)(4 38 9 33 14 28 19 23)(5 29 10 24 15 39 20 34)(41 125 46 140 51 135 56 130)(42 136 47 131 52 126 57 121)(43 127 48 122 53 137 58 132)(44 138 49 133 54 128 59 123)(45 129 50 124 55 139 60 134)(61 101 76 106 71 111 66 116)(62 112 77 117 72 102 67 107)(63 103 78 108 73 113 68 118)(64 114 79 119 74 104 69 109)(65 105 80 110 75 115 70 120)(81 147 96 152 91 157 86 142)(82 158 97 143 92 148 87 153)(83 149 98 154 93 159 88 144)(84 160 99 145 94 150 89 155)(85 151 100 156 95 141 90 146)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,61,158,140)(2,80,159,139)(3,79,160,138)(4,78,141,137)(5,77,142,136)(6,76,143,135)(7,75,144,134)(8,74,145,133)(9,73,146,132)(10,72,147,131)(11,71,148,130)(12,70,149,129)(13,69,150,128)(14,68,151,127)(15,67,152,126)(16,66,153,125)(17,65,154,124)(18,64,155,123)(19,63,156,122)(20,62,157,121)(21,45,93,115)(22,44,94,114)(23,43,95,113)(24,42,96,112)(25,41,97,111)(26,60,98,110)(27,59,99,109)(28,58,100,108)(29,57,81,107)(30,56,82,106)(31,55,83,105)(32,54,84,104)(33,53,85,103)(34,52,86,102)(35,51,87,101)(36,50,88,120)(37,49,89,119)(38,48,90,118)(39,47,91,117)(40,46,92,116), (1,25,6,40,11,35,16,30)(2,36,7,31,12,26,17,21)(3,27,8,22,13,37,18,32)(4,38,9,33,14,28,19,23)(5,29,10,24,15,39,20,34)(41,125,46,140,51,135,56,130)(42,136,47,131,52,126,57,121)(43,127,48,122,53,137,58,132)(44,138,49,133,54,128,59,123)(45,129,50,124,55,139,60,134)(61,101,76,106,71,111,66,116)(62,112,77,117,72,102,67,107)(63,103,78,108,73,113,68,118)(64,114,79,119,74,104,69,109)(65,105,80,110,75,115,70,120)(81,147,96,152,91,157,86,142)(82,158,97,143,92,148,87,153)(83,149,98,154,93,159,88,144)(84,160,99,145,94,150,89,155)(85,151,100,156,95,141,90,146)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,61,158,140)(2,80,159,139)(3,79,160,138)(4,78,141,137)(5,77,142,136)(6,76,143,135)(7,75,144,134)(8,74,145,133)(9,73,146,132)(10,72,147,131)(11,71,148,130)(12,70,149,129)(13,69,150,128)(14,68,151,127)(15,67,152,126)(16,66,153,125)(17,65,154,124)(18,64,155,123)(19,63,156,122)(20,62,157,121)(21,45,93,115)(22,44,94,114)(23,43,95,113)(24,42,96,112)(25,41,97,111)(26,60,98,110)(27,59,99,109)(28,58,100,108)(29,57,81,107)(30,56,82,106)(31,55,83,105)(32,54,84,104)(33,53,85,103)(34,52,86,102)(35,51,87,101)(36,50,88,120)(37,49,89,119)(38,48,90,118)(39,47,91,117)(40,46,92,116), (1,25,6,40,11,35,16,30)(2,36,7,31,12,26,17,21)(3,27,8,22,13,37,18,32)(4,38,9,33,14,28,19,23)(5,29,10,24,15,39,20,34)(41,125,46,140,51,135,56,130)(42,136,47,131,52,126,57,121)(43,127,48,122,53,137,58,132)(44,138,49,133,54,128,59,123)(45,129,50,124,55,139,60,134)(61,101,76,106,71,111,66,116)(62,112,77,117,72,102,67,107)(63,103,78,108,73,113,68,118)(64,114,79,119,74,104,69,109)(65,105,80,110,75,115,70,120)(81,147,96,152,91,157,86,142)(82,158,97,143,92,148,87,153)(83,149,98,154,93,159,88,144)(84,160,99,145,94,150,89,155)(85,151,100,156,95,141,90,146) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,61,158,140),(2,80,159,139),(3,79,160,138),(4,78,141,137),(5,77,142,136),(6,76,143,135),(7,75,144,134),(8,74,145,133),(9,73,146,132),(10,72,147,131),(11,71,148,130),(12,70,149,129),(13,69,150,128),(14,68,151,127),(15,67,152,126),(16,66,153,125),(17,65,154,124),(18,64,155,123),(19,63,156,122),(20,62,157,121),(21,45,93,115),(22,44,94,114),(23,43,95,113),(24,42,96,112),(25,41,97,111),(26,60,98,110),(27,59,99,109),(28,58,100,108),(29,57,81,107),(30,56,82,106),(31,55,83,105),(32,54,84,104),(33,53,85,103),(34,52,86,102),(35,51,87,101),(36,50,88,120),(37,49,89,119),(38,48,90,118),(39,47,91,117),(40,46,92,116)], [(1,25,6,40,11,35,16,30),(2,36,7,31,12,26,17,21),(3,27,8,22,13,37,18,32),(4,38,9,33,14,28,19,23),(5,29,10,24,15,39,20,34),(41,125,46,140,51,135,56,130),(42,136,47,131,52,126,57,121),(43,127,48,122,53,137,58,132),(44,138,49,133,54,128,59,123),(45,129,50,124,55,139,60,134),(61,101,76,106,71,111,66,116),(62,112,77,117,72,102,67,107),(63,103,78,108,73,113,68,118),(64,114,79,119,74,104,69,109),(65,105,80,110,75,115,70,120),(81,147,96,152,91,157,86,142),(82,158,97,143,92,148,87,153),(83,149,98,154,93,159,88,144),(84,160,99,145,94,150,89,155),(85,151,100,156,95,141,90,146)]])
68 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 5A | 5B | 8A | 8B | 8C | 8D | 8E | ··· | 8L | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20H | 20I | 20J | 20K | 20L | 40A | ··· | 40P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 8 | ··· | 8 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 20 | 20 | 20 | 20 | 2 | 2 | 4 | 4 | 4 | 4 | 10 | ··· | 10 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | - | + | + | + | - | |||||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | D4 | Q8 | D5 | D10 | D10 | C8○D4 | Dic10 | C4×D5 | C5⋊D4 | C4×D5 | D20.2C4 |
kernel | C20.51(C4⋊C4) | C20.8Q8 | C22×C5⋊2C8 | C23.21D10 | C10×M4(2) | C4⋊Dic5 | C23.D5 | C2×C20 | C2×C20 | C2×M4(2) | C2×C8 | C22×C4 | C10 | C2×C4 | C2×C4 | C2×C4 | C23 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 2 | 4 | 2 | 8 | 8 | 4 | 8 | 4 | 8 |
Matrix representation of C20.51(C4⋊C4) ►in GL4(𝔽41) generated by
9 | 0 | 0 | 0 |
8 | 32 | 0 | 0 |
0 | 0 | 31 | 0 |
0 | 0 | 35 | 4 |
34 | 26 | 0 | 0 |
17 | 7 | 0 | 0 |
0 | 0 | 5 | 2 |
0 | 0 | 28 | 36 |
16 | 5 | 0 | 0 |
8 | 25 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 37 | 32 |
G:=sub<GL(4,GF(41))| [9,8,0,0,0,32,0,0,0,0,31,35,0,0,0,4],[34,17,0,0,26,7,0,0,0,0,5,28,0,0,2,36],[16,8,0,0,5,25,0,0,0,0,9,37,0,0,0,32] >;
C20.51(C4⋊C4) in GAP, Magma, Sage, TeX
C_{20}._{51}(C_4\rtimes C_4)
% in TeX
G:=Group("C20.51(C4:C4)");
// GroupNames label
G:=SmallGroup(320,746);
// by ID
G=gap.SmallGroup(320,746);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,477,422,387,58,136,12550]);
// Polycyclic
G:=Group<a,b,c|a^20=b^4=1,c^4=a^10,b*a*b^-1=a^-1,c*a*c^-1=a^11,c*b*c^-1=a^10*b^-1>;
// generators/relations