Copied to
clipboard

G = (C2×C40)⋊C4order 320 = 26·5

11st semidirect product of C2×C40 and C4 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C40)⋊11C4, (C2×C8)⋊1Dic5, (C2×C4).14D20, C20.42(C4⋊C4), (C2×C20).11Q8, C23.9(C4×D5), (C2×C20).109D4, C4.Dic512C4, (C2×C4).5Dic10, C23.D5.8C4, (C2×C10).42C42, C4.13(C4⋊Dic5), (C22×C4).62D10, (C2×M4(2)).7D5, C20.58(C22⋊C4), C55(M4(2)⋊4C4), C4.28(C23.D5), C4.35(D10⋊C4), C22.10(C4×Dic5), C4.11(C10.D4), (C10×M4(2)).11C2, (C22×C20).125C22, C23.21D10.9C2, C22.6(C10.D4), C22.19(D10⋊C4), C10.34(C2.C42), C2.15(C10.10C42), (C2×C4).21(C4×D5), (C2×C10).36(C4⋊C4), (C2×C20).477(C2×C4), (C2×C4).76(C2×Dic5), (C2×C4).180(C5⋊D4), (C2×C4.Dic5).11C2, (C2×C10).74(C22⋊C4), (C22×C10).100(C2×C4), SmallGroup(320,114)

Series: Derived Chief Lower central Upper central

C1C2×C10 — (C2×C40)⋊C4
C1C5C10C2×C10C2×C20C22×C20C23.21D10 — (C2×C40)⋊C4
C5C10C2×C10 — (C2×C40)⋊C4
C1C4C22×C4C2×M4(2)

Generators and relations for (C2×C40)⋊C4
 G = < a,b,c | a2=b40=c4=1, ab=ba, cac-1=ab20, cbc-1=ab29 >

Subgroups: 262 in 90 conjugacy classes, 47 normal (39 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, Dic5, C20, C2×C10, C2×C10, C42⋊C2, C2×M4(2), C2×M4(2), C52C8, C40, C2×Dic5, C2×C20, C22×C10, M4(2)⋊4C4, C2×C52C8, C4.Dic5, C4.Dic5, C4×Dic5, C4⋊Dic5, C23.D5, C2×C40, C5×M4(2), C22×C20, C2×C4.Dic5, C23.21D10, C10×M4(2), (C2×C40)⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, D5, C42, C22⋊C4, C4⋊C4, Dic5, D10, C2.C42, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, M4(2)⋊4C4, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C10.10C42, (C2×C40)⋊C4

Smallest permutation representation of (C2×C40)⋊C4
On 80 points
Generators in S80
(1 73)(2 74)(3 75)(4 76)(5 77)(6 78)(7 79)(8 80)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(21 53)(22 54)(23 55)(24 56)(25 57)(26 58)(27 59)(28 60)(29 61)(30 62)(31 63)(32 64)(33 65)(34 66)(35 67)(36 68)(37 69)(38 70)(39 71)(40 72)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 42 22 62)(3 19)(4 60 24 80)(5 37)(6 78 26 58)(7 15)(8 56 28 76)(9 33)(10 74 30 54)(12 52 32 72)(13 29)(14 70 34 50)(16 48 36 68)(17 25)(18 66 38 46)(20 44 40 64)(23 39)(27 35)(41 45)(43 63)(47 59)(49 77)(51 55)(53 73)(57 69)(61 65)(67 79)(71 75)

G:=sub<Sym(80)| (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,42,22,62)(3,19)(4,60,24,80)(5,37)(6,78,26,58)(7,15)(8,56,28,76)(9,33)(10,74,30,54)(12,52,32,72)(13,29)(14,70,34,50)(16,48,36,68)(17,25)(18,66,38,46)(20,44,40,64)(23,39)(27,35)(41,45)(43,63)(47,59)(49,77)(51,55)(53,73)(57,69)(61,65)(67,79)(71,75)>;

G:=Group( (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,42,22,62)(3,19)(4,60,24,80)(5,37)(6,78,26,58)(7,15)(8,56,28,76)(9,33)(10,74,30,54)(12,52,32,72)(13,29)(14,70,34,50)(16,48,36,68)(17,25)(18,66,38,46)(20,44,40,64)(23,39)(27,35)(41,45)(43,63)(47,59)(49,77)(51,55)(53,73)(57,69)(61,65)(67,79)(71,75) );

G=PermutationGroup([[(1,73),(2,74),(3,75),(4,76),(5,77),(6,78),(7,79),(8,80),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(21,53),(22,54),(23,55),(24,56),(25,57),(26,58),(27,59),(28,60),(29,61),(30,62),(31,63),(32,64),(33,65),(34,66),(35,67),(36,68),(37,69),(38,70),(39,71),(40,72)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,42,22,62),(3,19),(4,60,24,80),(5,37),(6,78,26,58),(7,15),(8,56,28,76),(9,33),(10,74,30,54),(12,52,32,72),(13,29),(14,70,34,50),(16,48,36,68),(17,25),(18,66,38,46),(20,44,40,64),(23,39),(27,35),(41,45),(43,63),(47,59),(49,77),(51,55),(53,73),(57,69),(61,65),(67,79),(71,75)]])

62 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D8E8F8G8H10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222444444444558888888810···101010101020···202020202040···40
size112221122220202020224444202020202···244442···244444···4

62 irreducible representations

dim1111111222222222244
type+++++-+-+-+
imageC1C2C2C2C4C4C4D4Q8D5Dic5D10Dic10C4×D5D20C5⋊D4C4×D5M4(2)⋊4C4(C2×C40)⋊C4
kernel(C2×C40)⋊C4C2×C4.Dic5C23.21D10C10×M4(2)C4.Dic5C23.D5C2×C40C2×C20C2×C20C2×M4(2)C2×C8C22×C4C2×C4C2×C4C2×C4C2×C4C23C5C1
# reps1111444312424448428

Matrix representation of (C2×C40)⋊C4 in GL6(𝔽41)

4000000
0400000
0040000
003711229
000001
000010
,
18210000
20210000
00150635
000001
00592615
000900
,
3200000
2890000
00120350
0004000
0000040
000010

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,37,0,0,0,0,0,1,0,0,0,0,0,12,0,1,0,0,0,29,1,0],[18,20,0,0,0,0,21,21,0,0,0,0,0,0,15,0,5,0,0,0,0,0,9,9,0,0,6,0,26,0,0,0,35,1,15,0],[32,28,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,20,40,0,0,0,0,35,0,0,1,0,0,0,0,40,0] >;

(C2×C40)⋊C4 in GAP, Magma, Sage, TeX

(C_2\times C_{40})\rtimes C_4
% in TeX

G:=Group("(C2xC40):C4");
// GroupNames label

G:=SmallGroup(320,114);
// by ID

G=gap.SmallGroup(320,114);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,253,64,387,136,1684,12550]);
// Polycyclic

G:=Group<a,b,c|a^2=b^40=c^4=1,a*b=b*a,c*a*c^-1=a*b^20,c*b*c^-1=a*b^29>;
// generators/relations

׿
×
𝔽