Extensions 1→N→G→Q→1 with N=Dic5 and Q=M4(2)

Direct product G=N×Q with N=Dic5 and Q=M4(2)
dρLabelID
M4(2)×Dic5160M4(2)xDic5320,744

Semidirect products G=N:Q with N=Dic5 and Q=M4(2)
extensionφ:Q→Out NdρLabelID
Dic5⋊M4(2) = Dic5⋊M4(2)φ: M4(2)/C4C22 ⊆ Out Dic5160Dic5:M4(2)320,1033
Dic52M4(2) = Dic52M4(2)φ: M4(2)/C8C2 ⊆ Out Dic5160Dic5:2M4(2)320,356
Dic53M4(2) = C4018D4φ: M4(2)/C8C2 ⊆ Out Dic5160Dic5:3M4(2)320,755
Dic54M4(2) = C205M4(2)φ: M4(2)/C2×C4C2 ⊆ Out Dic5160Dic5:4M4(2)320,464
Dic55M4(2) = Dic55M4(2)φ: M4(2)/C2×C4C2 ⊆ Out Dic5160Dic5:5M4(2)320,745
Dic56M4(2) = C4×C4.F5φ: M4(2)/C2×C4C2 ⊆ Out Dic5160Dic5:6M4(2)320,1015
Dic57M4(2) = C42.14F5φ: M4(2)/C2×C4C2 ⊆ Out Dic5160Dic5:7M4(2)320,1020
Dic58M4(2) = C4×C22.F5φ: M4(2)/C2×C4C2 ⊆ Out Dic5160Dic5:8M4(2)320,1088
Dic59M4(2) = C208M4(2)φ: M4(2)/C2×C4C2 ⊆ Out Dic5160Dic5:9M4(2)320,1096
Dic510M4(2) = D10.6C42φ: trivial image160Dic5:10M4(2)320,334

Non-split extensions G=N.Q with N=Dic5 and Q=M4(2)
extensionφ:Q→Out NdρLabelID
Dic5.1M4(2) = C16⋊F5φ: M4(2)/C4C22 ⊆ Out Dic5804Dic5.1M4(2)320,183
Dic5.2M4(2) = C164F5φ: M4(2)/C4C22 ⊆ Out Dic5804Dic5.2M4(2)320,184
Dic5.3M4(2) = Dic5.M4(2)φ: M4(2)/C4C22 ⊆ Out Dic5320Dic5.3M4(2)320,1045
Dic5.4M4(2) = C40⋊Q8φ: M4(2)/C8C2 ⊆ Out Dic5320Dic5.4M4(2)320,328
Dic5.5M4(2) = Dic5.5M4(2)φ: M4(2)/C8C2 ⊆ Out Dic5320Dic5.5M4(2)320,455
Dic5.6M4(2) = C40⋊C8φ: M4(2)/C8C2 ⊆ Out Dic5320Dic5.6M4(2)320,217
Dic5.7M4(2) = C20.31M4(2)φ: M4(2)/C8C2 ⊆ Out Dic5320Dic5.7M4(2)320,218
Dic5.8M4(2) = C42.182D10φ: M4(2)/C2×C4C2 ⊆ Out Dic5160Dic5.8M4(2)320,332
Dic5.9M4(2) = Dic5.9M4(2)φ: M4(2)/C2×C4C2 ⊆ Out Dic5160Dic5.9M4(2)320,346
Dic5.10M4(2) = C42.6F5φ: M4(2)/C2×C4C2 ⊆ Out Dic5160Dic5.10M4(2)320,1016
Dic5.11M4(2) = C42.7F5φ: M4(2)/C2×C4C2 ⊆ Out Dic5160Dic5.11M4(2)320,1022
Dic5.12M4(2) = Dic5.12M4(2)φ: M4(2)/C2×C4C2 ⊆ Out Dic5160Dic5.12M4(2)320,1086
Dic5.13M4(2) = Dic5.13M4(2)φ: M4(2)/C2×C4C2 ⊆ Out Dic5160Dic5.13M4(2)320,1095
Dic5.14M4(2) = Dic5.14M4(2)φ: trivial image160Dic5.14M4(2)320,345
Dic5.15M4(2) = C42.200D10φ: trivial image160Dic5.15M4(2)320,460

׿
×
𝔽