Extensions 1→N→G→Q→1 with N=C2 and Q=D4⋊D10

Direct product G=N×Q with N=C2 and Q=D4⋊D10
dρLabelID
C2×D4⋊D1080C2xD4:D10320,1492


Non-split extensions G=N.Q with N=C2 and Q=D4⋊D10
extensionφ:Q→Aut NdρLabelID
C2.1(D4⋊D10) = C20.64(C4⋊C4)central extension (φ=1)160C2.1(D4:D10)320,622
C2.2(D4⋊D10) = C4⋊C436D10central extension (φ=1)80C2.2(D4:D10)320,628
C2.3(D4⋊D10) = C42.48D10central extension (φ=1)160C2.3(D4:D10)320,641
C2.4(D4⋊D10) = C42.56D10central extension (φ=1)160C2.4(D4:D10)320,653
C2.5(D4⋊D10) = C4○D4⋊Dic5central extension (φ=1)160C2.5(D4:D10)320,859
C2.6(D4⋊D10) = C4⋊C4.236D10central stem extension (φ=1)160C2.6(D4:D10)320,630
C2.7(D4⋊D10) = C20.38SD16central stem extension (φ=1)160C2.7(D4:D10)320,635
C2.8(D4⋊D10) = C207D8central stem extension (φ=1)160C2.8(D4:D10)320,642
C2.9(D4⋊D10) = C20.23Q16central stem extension (φ=1)320C2.9(D4:D10)320,648
C2.10(D4⋊D10) = Q8⋊D20central stem extension (φ=1)160C2.10(D4:D10)320,654
C2.11(D4⋊D10) = C4⋊D4.D5central stem extension (φ=1)160C2.11(D4:D10)320,661
C2.12(D4⋊D10) = D2016D4central stem extension (φ=1)80C2.12(D4:D10)320,663
C2.13(D4⋊D10) = C4⋊D4⋊D5central stem extension (φ=1)160C2.13(D4:D10)320,666
C2.14(D4⋊D10) = (C2×C10).Q16central stem extension (φ=1)160C2.14(D4:D10)320,671
C2.15(D4⋊D10) = D20.36D4central stem extension (φ=1)80C2.15(D4:D10)320,673
C2.16(D4⋊D10) = C22⋊Q8⋊D5central stem extension (φ=1)160C2.16(D4:D10)320,676
C2.17(D4⋊D10) = C42.62D10central stem extension (φ=1)160C2.17(D4:D10)320,682
C2.18(D4⋊D10) = D20.23D4central stem extension (φ=1)160C2.18(D4:D10)320,684
C2.19(D4⋊D10) = C42.64D10central stem extension (φ=1)160C2.19(D4:D10)320,685
C2.20(D4⋊D10) = C42.68D10central stem extension (φ=1)320C2.20(D4:D10)320,692
C2.21(D4⋊D10) = D20.4Q8central stem extension (φ=1)160C2.21(D4:D10)320,693
C2.22(D4⋊D10) = C42.70D10central stem extension (φ=1)160C2.22(D4:D10)320,694
C2.23(D4⋊D10) = (C5×D4)⋊14D4central stem extension (φ=1)160C2.23(D4:D10)320,865

׿
×
𝔽