Copied to
clipboard

G = D20.23D4order 320 = 26·5

6th non-split extension by D20 of D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D20.23D4, C42.63D10, C4.50(D4×D5), (C4×D20)⋊21C2, C203C829C2, C4.4D41D5, C20.24(C2×D4), (C2×D4).47D10, (C2×C20).271D4, C55(D4.2D4), (C2×Q8).37D10, C20.68(C4○D4), D4⋊Dic519C2, Q8⋊Dic522C2, C4.2(D42D5), C10.105(C4○D8), C2.11(C202D4), (C4×C20).106C22, (C2×C20).375C23, (D4×C10).63C22, (Q8×C10).55C22, C2.18(D4⋊D10), C10.102(C4⋊D4), C10.119(C8⋊C22), (C2×D20).252C22, C4⋊Dic5.341C22, C2.24(D4.8D10), (C2×Q8⋊D5)⋊12C2, (C2×D4⋊D5).6C2, (C5×C4.4D4)⋊1C2, (C2×C10).506(C2×D4), (C2×C4).61(C5⋊D4), (C2×C4).475(C22×D5), C22.181(C2×C5⋊D4), (C2×C52C8).121C22, SmallGroup(320,684)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D20.23D4
C1C5C10C20C2×C20C2×D20C4×D20 — D20.23D4
C5C10C2×C20 — D20.23D4
C1C22C42C4.4D4

Generators and relations for D20.23D4
 G = < a,b,c,d | a20=b2=c4=1, d2=a10, bab=a-1, ac=ca, dad-1=a11, bc=cb, dbd-1=a15b, dcd-1=a10c-1 >

Subgroups: 518 in 124 conjugacy classes, 41 normal (39 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, D8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, Dic5, C20, C20, D10, C2×C10, C2×C10, D4⋊C4, Q8⋊C4, C4⋊C8, C4×D4, C4.4D4, C2×D8, C2×SD16, C52C8, C4×D5, D20, D20, C2×Dic5, C2×C20, C2×C20, C5×D4, C5×Q8, C22×D5, C22×C10, D4.2D4, C2×C52C8, C4⋊Dic5, D10⋊C4, D4⋊D5, Q8⋊D5, C4×C20, C5×C22⋊C4, C2×C4×D5, C2×D20, D4×C10, Q8×C10, C203C8, D4⋊Dic5, Q8⋊Dic5, C4×D20, C2×D4⋊D5, C2×Q8⋊D5, C5×C4.4D4, D20.23D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C4⋊D4, C4○D8, C8⋊C22, C5⋊D4, C22×D5, D4.2D4, D4×D5, D42D5, C2×C5⋊D4, C202D4, D4⋊D10, D4.8D10, D20.23D4

Smallest permutation representation of D20.23D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 121)(2 140)(3 139)(4 138)(5 137)(6 136)(7 135)(8 134)(9 133)(10 132)(11 131)(12 130)(13 129)(14 128)(15 127)(16 126)(17 125)(18 124)(19 123)(20 122)(21 148)(22 147)(23 146)(24 145)(25 144)(26 143)(27 142)(28 141)(29 160)(30 159)(31 158)(32 157)(33 156)(34 155)(35 154)(36 153)(37 152)(38 151)(39 150)(40 149)(41 101)(42 120)(43 119)(44 118)(45 117)(46 116)(47 115)(48 114)(49 113)(50 112)(51 111)(52 110)(53 109)(54 108)(55 107)(56 106)(57 105)(58 104)(59 103)(60 102)(61 89)(62 88)(63 87)(64 86)(65 85)(66 84)(67 83)(68 82)(69 81)(70 100)(71 99)(72 98)(73 97)(74 96)(75 95)(76 94)(77 93)(78 92)(79 91)(80 90)
(1 59 122 104)(2 60 123 105)(3 41 124 106)(4 42 125 107)(5 43 126 108)(6 44 127 109)(7 45 128 110)(8 46 129 111)(9 47 130 112)(10 48 131 113)(11 49 132 114)(12 50 133 115)(13 51 134 116)(14 52 135 117)(15 53 136 118)(16 54 137 119)(17 55 138 120)(18 56 139 101)(19 57 140 102)(20 58 121 103)(21 94 154 62)(22 95 155 63)(23 96 156 64)(24 97 157 65)(25 98 158 66)(26 99 159 67)(27 100 160 68)(28 81 141 69)(29 82 142 70)(30 83 143 71)(31 84 144 72)(32 85 145 73)(33 86 146 74)(34 87 147 75)(35 88 148 76)(36 89 149 77)(37 90 150 78)(38 91 151 79)(39 92 152 80)(40 93 153 61)
(1 89 11 99)(2 100 12 90)(3 91 13 81)(4 82 14 92)(5 93 15 83)(6 84 16 94)(7 95 17 85)(8 86 18 96)(9 97 19 87)(10 88 20 98)(21 54 31 44)(22 45 32 55)(23 56 33 46)(24 47 34 57)(25 58 35 48)(26 49 36 59)(27 60 37 50)(28 51 38 41)(29 42 39 52)(30 53 40 43)(61 136 71 126)(62 127 72 137)(63 138 73 128)(64 129 74 139)(65 140 75 130)(66 131 76 121)(67 122 77 132)(68 133 78 123)(69 124 79 134)(70 135 80 125)(101 146 111 156)(102 157 112 147)(103 148 113 158)(104 159 114 149)(105 150 115 160)(106 141 116 151)(107 152 117 142)(108 143 118 153)(109 154 119 144)(110 145 120 155)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,121)(2,140)(3,139)(4,138)(5,137)(6,136)(7,135)(8,134)(9,133)(10,132)(11,131)(12,130)(13,129)(14,128)(15,127)(16,126)(17,125)(18,124)(19,123)(20,122)(21,148)(22,147)(23,146)(24,145)(25,144)(26,143)(27,142)(28,141)(29,160)(30,159)(31,158)(32,157)(33,156)(34,155)(35,154)(36,153)(37,152)(38,151)(39,150)(40,149)(41,101)(42,120)(43,119)(44,118)(45,117)(46,116)(47,115)(48,114)(49,113)(50,112)(51,111)(52,110)(53,109)(54,108)(55,107)(56,106)(57,105)(58,104)(59,103)(60,102)(61,89)(62,88)(63,87)(64,86)(65,85)(66,84)(67,83)(68,82)(69,81)(70,100)(71,99)(72,98)(73,97)(74,96)(75,95)(76,94)(77,93)(78,92)(79,91)(80,90), (1,59,122,104)(2,60,123,105)(3,41,124,106)(4,42,125,107)(5,43,126,108)(6,44,127,109)(7,45,128,110)(8,46,129,111)(9,47,130,112)(10,48,131,113)(11,49,132,114)(12,50,133,115)(13,51,134,116)(14,52,135,117)(15,53,136,118)(16,54,137,119)(17,55,138,120)(18,56,139,101)(19,57,140,102)(20,58,121,103)(21,94,154,62)(22,95,155,63)(23,96,156,64)(24,97,157,65)(25,98,158,66)(26,99,159,67)(27,100,160,68)(28,81,141,69)(29,82,142,70)(30,83,143,71)(31,84,144,72)(32,85,145,73)(33,86,146,74)(34,87,147,75)(35,88,148,76)(36,89,149,77)(37,90,150,78)(38,91,151,79)(39,92,152,80)(40,93,153,61), (1,89,11,99)(2,100,12,90)(3,91,13,81)(4,82,14,92)(5,93,15,83)(6,84,16,94)(7,95,17,85)(8,86,18,96)(9,97,19,87)(10,88,20,98)(21,54,31,44)(22,45,32,55)(23,56,33,46)(24,47,34,57)(25,58,35,48)(26,49,36,59)(27,60,37,50)(28,51,38,41)(29,42,39,52)(30,53,40,43)(61,136,71,126)(62,127,72,137)(63,138,73,128)(64,129,74,139)(65,140,75,130)(66,131,76,121)(67,122,77,132)(68,133,78,123)(69,124,79,134)(70,135,80,125)(101,146,111,156)(102,157,112,147)(103,148,113,158)(104,159,114,149)(105,150,115,160)(106,141,116,151)(107,152,117,142)(108,143,118,153)(109,154,119,144)(110,145,120,155)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,121)(2,140)(3,139)(4,138)(5,137)(6,136)(7,135)(8,134)(9,133)(10,132)(11,131)(12,130)(13,129)(14,128)(15,127)(16,126)(17,125)(18,124)(19,123)(20,122)(21,148)(22,147)(23,146)(24,145)(25,144)(26,143)(27,142)(28,141)(29,160)(30,159)(31,158)(32,157)(33,156)(34,155)(35,154)(36,153)(37,152)(38,151)(39,150)(40,149)(41,101)(42,120)(43,119)(44,118)(45,117)(46,116)(47,115)(48,114)(49,113)(50,112)(51,111)(52,110)(53,109)(54,108)(55,107)(56,106)(57,105)(58,104)(59,103)(60,102)(61,89)(62,88)(63,87)(64,86)(65,85)(66,84)(67,83)(68,82)(69,81)(70,100)(71,99)(72,98)(73,97)(74,96)(75,95)(76,94)(77,93)(78,92)(79,91)(80,90), (1,59,122,104)(2,60,123,105)(3,41,124,106)(4,42,125,107)(5,43,126,108)(6,44,127,109)(7,45,128,110)(8,46,129,111)(9,47,130,112)(10,48,131,113)(11,49,132,114)(12,50,133,115)(13,51,134,116)(14,52,135,117)(15,53,136,118)(16,54,137,119)(17,55,138,120)(18,56,139,101)(19,57,140,102)(20,58,121,103)(21,94,154,62)(22,95,155,63)(23,96,156,64)(24,97,157,65)(25,98,158,66)(26,99,159,67)(27,100,160,68)(28,81,141,69)(29,82,142,70)(30,83,143,71)(31,84,144,72)(32,85,145,73)(33,86,146,74)(34,87,147,75)(35,88,148,76)(36,89,149,77)(37,90,150,78)(38,91,151,79)(39,92,152,80)(40,93,153,61), (1,89,11,99)(2,100,12,90)(3,91,13,81)(4,82,14,92)(5,93,15,83)(6,84,16,94)(7,95,17,85)(8,86,18,96)(9,97,19,87)(10,88,20,98)(21,54,31,44)(22,45,32,55)(23,56,33,46)(24,47,34,57)(25,58,35,48)(26,49,36,59)(27,60,37,50)(28,51,38,41)(29,42,39,52)(30,53,40,43)(61,136,71,126)(62,127,72,137)(63,138,73,128)(64,129,74,139)(65,140,75,130)(66,131,76,121)(67,122,77,132)(68,133,78,123)(69,124,79,134)(70,135,80,125)(101,146,111,156)(102,157,112,147)(103,148,113,158)(104,159,114,149)(105,150,115,160)(106,141,116,151)(107,152,117,142)(108,143,118,153)(109,154,119,144)(110,145,120,155) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,121),(2,140),(3,139),(4,138),(5,137),(6,136),(7,135),(8,134),(9,133),(10,132),(11,131),(12,130),(13,129),(14,128),(15,127),(16,126),(17,125),(18,124),(19,123),(20,122),(21,148),(22,147),(23,146),(24,145),(25,144),(26,143),(27,142),(28,141),(29,160),(30,159),(31,158),(32,157),(33,156),(34,155),(35,154),(36,153),(37,152),(38,151),(39,150),(40,149),(41,101),(42,120),(43,119),(44,118),(45,117),(46,116),(47,115),(48,114),(49,113),(50,112),(51,111),(52,110),(53,109),(54,108),(55,107),(56,106),(57,105),(58,104),(59,103),(60,102),(61,89),(62,88),(63,87),(64,86),(65,85),(66,84),(67,83),(68,82),(69,81),(70,100),(71,99),(72,98),(73,97),(74,96),(75,95),(76,94),(77,93),(78,92),(79,91),(80,90)], [(1,59,122,104),(2,60,123,105),(3,41,124,106),(4,42,125,107),(5,43,126,108),(6,44,127,109),(7,45,128,110),(8,46,129,111),(9,47,130,112),(10,48,131,113),(11,49,132,114),(12,50,133,115),(13,51,134,116),(14,52,135,117),(15,53,136,118),(16,54,137,119),(17,55,138,120),(18,56,139,101),(19,57,140,102),(20,58,121,103),(21,94,154,62),(22,95,155,63),(23,96,156,64),(24,97,157,65),(25,98,158,66),(26,99,159,67),(27,100,160,68),(28,81,141,69),(29,82,142,70),(30,83,143,71),(31,84,144,72),(32,85,145,73),(33,86,146,74),(34,87,147,75),(35,88,148,76),(36,89,149,77),(37,90,150,78),(38,91,151,79),(39,92,152,80),(40,93,153,61)], [(1,89,11,99),(2,100,12,90),(3,91,13,81),(4,82,14,92),(5,93,15,83),(6,84,16,94),(7,95,17,85),(8,86,18,96),(9,97,19,87),(10,88,20,98),(21,54,31,44),(22,45,32,55),(23,56,33,46),(24,47,34,57),(25,58,35,48),(26,49,36,59),(27,60,37,50),(28,51,38,41),(29,42,39,52),(30,53,40,43),(61,136,71,126),(62,127,72,137),(63,138,73,128),(64,129,74,139),(65,140,75,130),(66,131,76,121),(67,122,77,132),(68,133,78,123),(69,124,79,134),(70,135,80,125),(101,146,111,156),(102,157,112,147),(103,148,113,158),(104,159,114,149),(105,150,115,160),(106,141,116,151),(107,152,117,142),(108,143,118,153),(109,154,119,144),(110,145,120,155)]])

47 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H5A5B8A8B8C8D10A···10F10G10H10I10J20A···20L20M20N20O20P
order12222224444444455888810···101010101020···2020202020
size111182020222248202022202020202···288884···48888

47 irreducible representations

dim1111111122222222244444
type++++++++++++++++-+
imageC1C2C2C2C2C2C2C2D4D4D5C4○D4D10D10D10C4○D8C5⋊D4C8⋊C22D4×D5D42D5D4⋊D10D4.8D10
kernelD20.23D4C203C8D4⋊Dic5Q8⋊Dic5C4×D20C2×D4⋊D5C2×Q8⋊D5C5×C4.4D4D20C2×C20C4.4D4C20C42C2×D4C2×Q8C10C2×C4C10C4C4C2C2
# reps1111111122222224812244

Matrix representation of D20.23D4 in GL6(𝔽41)

35400000
100000
0004000
001000
000010
000001
,
0400000
4000000
0040000
000100
0000400
0000040
,
100000
010000
0032000
0003200
0000938
0000032
,
1860000
35230000
00151500
00152600
00003013
00001611

G:=sub<GL(6,GF(41))| [35,1,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,40,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,9,0,0,0,0,0,38,32],[18,35,0,0,0,0,6,23,0,0,0,0,0,0,15,15,0,0,0,0,15,26,0,0,0,0,0,0,30,16,0,0,0,0,13,11] >;

D20.23D4 in GAP, Magma, Sage, TeX

D_{20}._{23}D_4
% in TeX

G:=Group("D20.23D4");
// GroupNames label

G:=SmallGroup(320,684);
// by ID

G=gap.SmallGroup(320,684);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,344,254,219,1123,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=1,d^2=a^10,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^11,b*c=c*b,d*b*d^-1=a^15*b,d*c*d^-1=a^10*c^-1>;
// generators/relations

׿
×
𝔽