Copied to
clipboard

G = Q8⋊D20order 320 = 26·5

The semidirect product of Q8 and D20 acting via D20/C20=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q81D20, C2013SD16, C42.57D10, (C4×Q8)⋊3D5, (C5×Q8)⋊8D4, C43(Q8⋊D5), (Q8×C20)⋊3C2, C203C826C2, C53(C4⋊SD16), C20.20(C2×D4), (C2×C20).66D4, C4.16(C2×D20), C4⋊C4.253D10, C204D4.7C2, D206C432C2, C4.12(C4○D20), C20.60(C4○D4), (C4×C20).98C22, (C2×Q8).160D10, C10.70(C2×SD16), C2.15(C207D4), C10.67(C4⋊D4), (C2×C20).347C23, (C2×D20).99C22, C2.10(D4⋊D10), C10.112(C8⋊C22), (Q8×C10).195C22, (C2×Q8⋊D5)⋊7C2, C2.7(C2×Q8⋊D5), (C2×C10).478(C2×D4), (C2×C4).249(C5⋊D4), (C5×C4⋊C4).284C22, (C2×C4).447(C22×D5), C22.155(C2×C5⋊D4), (C2×C52C8).101C22, SmallGroup(320,654)

Series: Derived Chief Lower central Upper central

C1C2×C20 — Q8⋊D20
C1C5C10C20C2×C20C2×D20C204D4 — Q8⋊D20
C5C10C2×C20 — Q8⋊D20
C1C22C42C4×Q8

Generators and relations for Q8⋊D20
 G = < a,b,c,d | a4=c20=d2=1, b2=a2, bab-1=dad=a-1, ac=ca, bc=cb, dbd=a-1b, dcd=c-1 >

Subgroups: 646 in 128 conjugacy classes, 47 normal (31 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, D5, C10, C42, C42, C4⋊C4, C4⋊C4, C2×C8, SD16, C2×D4, C2×Q8, C20, C20, C20, D10, C2×C10, D4⋊C4, C4⋊C8, C4×Q8, C41D4, C2×SD16, C52C8, D20, C2×C20, C2×C20, C5×Q8, C5×Q8, C22×D5, C4⋊SD16, C2×C52C8, Q8⋊D5, C4×C20, C4×C20, C5×C4⋊C4, C5×C4⋊C4, C2×D20, C2×D20, Q8×C10, C203C8, D206C4, C204D4, C2×Q8⋊D5, Q8×C20, Q8⋊D20
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, C4○D4, D10, C4⋊D4, C2×SD16, C8⋊C22, D20, C5⋊D4, C22×D5, C4⋊SD16, Q8⋊D5, C2×D20, C4○D20, C2×C5⋊D4, C207D4, C2×Q8⋊D5, D4⋊D10, Q8⋊D20

Smallest permutation representation of Q8⋊D20
On 160 points
Generators in S160
(1 134 148 98)(2 135 149 99)(3 136 150 100)(4 137 151 81)(5 138 152 82)(6 139 153 83)(7 140 154 84)(8 121 155 85)(9 122 156 86)(10 123 157 87)(11 124 158 88)(12 125 159 89)(13 126 160 90)(14 127 141 91)(15 128 142 92)(16 129 143 93)(17 130 144 94)(18 131 145 95)(19 132 146 96)(20 133 147 97)(21 53 72 108)(22 54 73 109)(23 55 74 110)(24 56 75 111)(25 57 76 112)(26 58 77 113)(27 59 78 114)(28 60 79 115)(29 41 80 116)(30 42 61 117)(31 43 62 118)(32 44 63 119)(33 45 64 120)(34 46 65 101)(35 47 66 102)(36 48 67 103)(37 49 68 104)(38 50 69 105)(39 51 70 106)(40 52 71 107)
(1 29 148 80)(2 30 149 61)(3 31 150 62)(4 32 151 63)(5 33 152 64)(6 34 153 65)(7 35 154 66)(8 36 155 67)(9 37 156 68)(10 38 157 69)(11 39 158 70)(12 40 159 71)(13 21 160 72)(14 22 141 73)(15 23 142 74)(16 24 143 75)(17 25 144 76)(18 26 145 77)(19 27 146 78)(20 28 147 79)(41 134 116 98)(42 135 117 99)(43 136 118 100)(44 137 119 81)(45 138 120 82)(46 139 101 83)(47 140 102 84)(48 121 103 85)(49 122 104 86)(50 123 105 87)(51 124 106 88)(52 125 107 89)(53 126 108 90)(54 127 109 91)(55 128 110 92)(56 129 111 93)(57 130 112 94)(58 131 113 95)(59 132 114 96)(60 133 115 97)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 48)(22 47)(23 46)(24 45)(25 44)(26 43)(27 42)(28 41)(29 60)(30 59)(31 58)(32 57)(33 56)(34 55)(35 54)(36 53)(37 52)(38 51)(39 50)(40 49)(61 114)(62 113)(63 112)(64 111)(65 110)(66 109)(67 108)(68 107)(69 106)(70 105)(71 104)(72 103)(73 102)(74 101)(75 120)(76 119)(77 118)(78 117)(79 116)(80 115)(81 130)(82 129)(83 128)(84 127)(85 126)(86 125)(87 124)(88 123)(89 122)(90 121)(91 140)(92 139)(93 138)(94 137)(95 136)(96 135)(97 134)(98 133)(99 132)(100 131)(141 154)(142 153)(143 152)(144 151)(145 150)(146 149)(147 148)(155 160)(156 159)(157 158)

G:=sub<Sym(160)| (1,134,148,98)(2,135,149,99)(3,136,150,100)(4,137,151,81)(5,138,152,82)(6,139,153,83)(7,140,154,84)(8,121,155,85)(9,122,156,86)(10,123,157,87)(11,124,158,88)(12,125,159,89)(13,126,160,90)(14,127,141,91)(15,128,142,92)(16,129,143,93)(17,130,144,94)(18,131,145,95)(19,132,146,96)(20,133,147,97)(21,53,72,108)(22,54,73,109)(23,55,74,110)(24,56,75,111)(25,57,76,112)(26,58,77,113)(27,59,78,114)(28,60,79,115)(29,41,80,116)(30,42,61,117)(31,43,62,118)(32,44,63,119)(33,45,64,120)(34,46,65,101)(35,47,66,102)(36,48,67,103)(37,49,68,104)(38,50,69,105)(39,51,70,106)(40,52,71,107), (1,29,148,80)(2,30,149,61)(3,31,150,62)(4,32,151,63)(5,33,152,64)(6,34,153,65)(7,35,154,66)(8,36,155,67)(9,37,156,68)(10,38,157,69)(11,39,158,70)(12,40,159,71)(13,21,160,72)(14,22,141,73)(15,23,142,74)(16,24,143,75)(17,25,144,76)(18,26,145,77)(19,27,146,78)(20,28,147,79)(41,134,116,98)(42,135,117,99)(43,136,118,100)(44,137,119,81)(45,138,120,82)(46,139,101,83)(47,140,102,84)(48,121,103,85)(49,122,104,86)(50,123,105,87)(51,124,106,88)(52,125,107,89)(53,126,108,90)(54,127,109,91)(55,128,110,92)(56,129,111,93)(57,130,112,94)(58,131,113,95)(59,132,114,96)(60,133,115,97), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,48)(22,47)(23,46)(24,45)(25,44)(26,43)(27,42)(28,41)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,54)(36,53)(37,52)(38,51)(39,50)(40,49)(61,114)(62,113)(63,112)(64,111)(65,110)(66,109)(67,108)(68,107)(69,106)(70,105)(71,104)(72,103)(73,102)(74,101)(75,120)(76,119)(77,118)(78,117)(79,116)(80,115)(81,130)(82,129)(83,128)(84,127)(85,126)(86,125)(87,124)(88,123)(89,122)(90,121)(91,140)(92,139)(93,138)(94,137)(95,136)(96,135)(97,134)(98,133)(99,132)(100,131)(141,154)(142,153)(143,152)(144,151)(145,150)(146,149)(147,148)(155,160)(156,159)(157,158)>;

G:=Group( (1,134,148,98)(2,135,149,99)(3,136,150,100)(4,137,151,81)(5,138,152,82)(6,139,153,83)(7,140,154,84)(8,121,155,85)(9,122,156,86)(10,123,157,87)(11,124,158,88)(12,125,159,89)(13,126,160,90)(14,127,141,91)(15,128,142,92)(16,129,143,93)(17,130,144,94)(18,131,145,95)(19,132,146,96)(20,133,147,97)(21,53,72,108)(22,54,73,109)(23,55,74,110)(24,56,75,111)(25,57,76,112)(26,58,77,113)(27,59,78,114)(28,60,79,115)(29,41,80,116)(30,42,61,117)(31,43,62,118)(32,44,63,119)(33,45,64,120)(34,46,65,101)(35,47,66,102)(36,48,67,103)(37,49,68,104)(38,50,69,105)(39,51,70,106)(40,52,71,107), (1,29,148,80)(2,30,149,61)(3,31,150,62)(4,32,151,63)(5,33,152,64)(6,34,153,65)(7,35,154,66)(8,36,155,67)(9,37,156,68)(10,38,157,69)(11,39,158,70)(12,40,159,71)(13,21,160,72)(14,22,141,73)(15,23,142,74)(16,24,143,75)(17,25,144,76)(18,26,145,77)(19,27,146,78)(20,28,147,79)(41,134,116,98)(42,135,117,99)(43,136,118,100)(44,137,119,81)(45,138,120,82)(46,139,101,83)(47,140,102,84)(48,121,103,85)(49,122,104,86)(50,123,105,87)(51,124,106,88)(52,125,107,89)(53,126,108,90)(54,127,109,91)(55,128,110,92)(56,129,111,93)(57,130,112,94)(58,131,113,95)(59,132,114,96)(60,133,115,97), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,48)(22,47)(23,46)(24,45)(25,44)(26,43)(27,42)(28,41)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,54)(36,53)(37,52)(38,51)(39,50)(40,49)(61,114)(62,113)(63,112)(64,111)(65,110)(66,109)(67,108)(68,107)(69,106)(70,105)(71,104)(72,103)(73,102)(74,101)(75,120)(76,119)(77,118)(78,117)(79,116)(80,115)(81,130)(82,129)(83,128)(84,127)(85,126)(86,125)(87,124)(88,123)(89,122)(90,121)(91,140)(92,139)(93,138)(94,137)(95,136)(96,135)(97,134)(98,133)(99,132)(100,131)(141,154)(142,153)(143,152)(144,151)(145,150)(146,149)(147,148)(155,160)(156,159)(157,158) );

G=PermutationGroup([[(1,134,148,98),(2,135,149,99),(3,136,150,100),(4,137,151,81),(5,138,152,82),(6,139,153,83),(7,140,154,84),(8,121,155,85),(9,122,156,86),(10,123,157,87),(11,124,158,88),(12,125,159,89),(13,126,160,90),(14,127,141,91),(15,128,142,92),(16,129,143,93),(17,130,144,94),(18,131,145,95),(19,132,146,96),(20,133,147,97),(21,53,72,108),(22,54,73,109),(23,55,74,110),(24,56,75,111),(25,57,76,112),(26,58,77,113),(27,59,78,114),(28,60,79,115),(29,41,80,116),(30,42,61,117),(31,43,62,118),(32,44,63,119),(33,45,64,120),(34,46,65,101),(35,47,66,102),(36,48,67,103),(37,49,68,104),(38,50,69,105),(39,51,70,106),(40,52,71,107)], [(1,29,148,80),(2,30,149,61),(3,31,150,62),(4,32,151,63),(5,33,152,64),(6,34,153,65),(7,35,154,66),(8,36,155,67),(9,37,156,68),(10,38,157,69),(11,39,158,70),(12,40,159,71),(13,21,160,72),(14,22,141,73),(15,23,142,74),(16,24,143,75),(17,25,144,76),(18,26,145,77),(19,27,146,78),(20,28,147,79),(41,134,116,98),(42,135,117,99),(43,136,118,100),(44,137,119,81),(45,138,120,82),(46,139,101,83),(47,140,102,84),(48,121,103,85),(49,122,104,86),(50,123,105,87),(51,124,106,88),(52,125,107,89),(53,126,108,90),(54,127,109,91),(55,128,110,92),(56,129,111,93),(57,130,112,94),(58,131,113,95),(59,132,114,96),(60,133,115,97)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,48),(22,47),(23,46),(24,45),(25,44),(26,43),(27,42),(28,41),(29,60),(30,59),(31,58),(32,57),(33,56),(34,55),(35,54),(36,53),(37,52),(38,51),(39,50),(40,49),(61,114),(62,113),(63,112),(64,111),(65,110),(66,109),(67,108),(68,107),(69,106),(70,105),(71,104),(72,103),(73,102),(74,101),(75,120),(76,119),(77,118),(78,117),(79,116),(80,115),(81,130),(82,129),(83,128),(84,127),(85,126),(86,125),(87,124),(88,123),(89,122),(90,121),(91,140),(92,139),(93,138),(94,137),(95,136),(96,135),(97,134),(98,133),(99,132),(100,131),(141,154),(142,153),(143,152),(144,151),(145,150),(146,149),(147,148),(155,160),(156,159),(157,158)]])

59 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4I5A5B8A8B8C8D10A···10F20A···20H20I···20AF
order12222244444···455888810···1020···2020···20
size1111404022224···422202020202···22···24···4

59 irreducible representations

dim11111122222222222444
type++++++++++++++++
imageC1C2C2C2C2C2D4D4D5SD16C4○D4D10D10D10C5⋊D4D20C4○D20C8⋊C22Q8⋊D5D4⋊D10
kernelQ8⋊D20C203C8D206C4C204D4C2×Q8⋊D5Q8×C20C2×C20C5×Q8C4×Q8C20C20C42C4⋊C4C2×Q8C2×C4Q8C4C10C4C2
# reps11212122242222888144

Matrix representation of Q8⋊D20 in GL4(𝔽41) generated by

1000
0100
00139
00140
,
1000
0100
001130
002630
,
283900
21600
00400
00040
,
283900
21300
00400
00401
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,1,1,0,0,39,40],[1,0,0,0,0,1,0,0,0,0,11,26,0,0,30,30],[28,2,0,0,39,16,0,0,0,0,40,0,0,0,0,40],[28,2,0,0,39,13,0,0,0,0,40,40,0,0,0,1] >;

Q8⋊D20 in GAP, Magma, Sage, TeX

Q_8\rtimes D_{20}
% in TeX

G:=Group("Q8:D20");
// GroupNames label

G:=SmallGroup(320,654);
// by ID

G=gap.SmallGroup(320,654);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,120,254,184,1123,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^20=d^2=1,b^2=a^2,b*a*b^-1=d*a*d=a^-1,a*c=c*a,b*c=c*b,d*b*d=a^-1*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽