Extensions 1→N→G→Q→1 with N=C22 and Q=D40

Direct product G=N×Q with N=C22 and Q=D40

Semidirect products G=N:Q with N=C22 and Q=D40
extensionφ:Q→Aut NdρLabelID
C221D40 = C4029D4φ: D40/C40C2 ⊆ Aut C22160C2^2:1D40320,742
C222D40 = D2013D4φ: D40/D20C2 ⊆ Aut C2280C2^2:2D40320,359

Non-split extensions G=N.Q with N=C22 and Q=D40
extensionφ:Q→Aut NdρLabelID
C22.1D40 = D807C2φ: D40/C40C2 ⊆ Aut C221602C2^2.1D40320,531
C22.2D40 = C22.2D40φ: D40/D20C2 ⊆ Aut C2280C2^2.2D40320,28
C22.3D40 = D408C4φ: D40/D20C2 ⊆ Aut C22804C2^2.3D40320,76
C22.4D40 = C22.D40φ: D40/D20C2 ⊆ Aut C22160C2^2.4D40320,363
C22.5D40 = D80⋊C2φ: D40/D20C2 ⊆ Aut C22804+C2^2.5D40320,535
C22.6D40 = C16.D10φ: D40/D20C2 ⊆ Aut C221604-C2^2.6D40320,536
C22.7D40 = C40.78D4central extension (φ=1)320C2^2.7D40320,61
C22.8D40 = C8013C4central extension (φ=1)320C2^2.8D40320,62
C22.9D40 = C8014C4central extension (φ=1)320C2^2.9D40320,63
C22.10D40 = D407C4central extension (φ=1)160C2^2.10D40320,67
C22.11D40 = C20.39C42central extension (φ=1)320C2^2.11D40320,109
C22.12D40 = C2×D80central extension (φ=1)160C2^2.12D40320,529
C22.13D40 = C2×C16⋊D5central extension (φ=1)160C2^2.13D40320,530
C22.14D40 = C2×Dic40central extension (φ=1)320C2^2.14D40320,532
C22.15D40 = C2×C405C4central extension (φ=1)320C2^2.15D40320,732
C22.16D40 = C2×D205C4central extension (φ=1)160C2^2.16D40320,739