Copied to
clipboard

G = D80:C2order 320 = 26·5

2nd semidirect product of D80 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D80:2C2, C16:1D10, C8.3D20, C40.2D4, C80:1C22, C20.14D8, C4.14D40, D40:8C22, M5(2):1D5, C22.5D40, C40.59C23, Dic20:7C22, C16:D5:1C2, (C2xC10).6D8, (C2xD40):11C2, C5:1(C16:C22), C10.13(C2xD8), (C2xC4).41D20, C4.40(C2xD20), (C2xC8).73D10, C2.15(C2xD40), D40:7C2:9C2, (C2xC20).128D4, C20.283(C2xD4), (C5xM5(2)):1C2, C8.49(C22xD5), (C2xC40).59C22, SmallGroup(320,535)

Series: Derived Chief Lower central Upper central

C1C40 — D80:C2
C1C5C10C20C40D40C2xD40 — D80:C2
C5C10C20C40 — D80:C2
C1C2C2xC4C2xC8M5(2)

Generators and relations for D80:C2
 G = < a,b,c | a80=b2=c2=1, bab=a-1, cac=a41, cbc=a40b >

Subgroups: 622 in 90 conjugacy classes, 35 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2xC4, C2xC4, D4, Q8, C23, D5, C10, C10, C16, C2xC8, D8, SD16, Q16, C2xD4, C4oD4, Dic5, C20, D10, C2xC10, M5(2), D16, SD32, C2xD8, C4oD8, C40, Dic10, C4xD5, D20, C5:D4, C2xC20, C22xD5, C16:C22, C80, C40:C2, D40, D40, D40, Dic20, C2xC40, C2xD20, C4oD20, D80, C16:D5, C5xM5(2), C2xD40, D40:7C2, D80:C2
Quotients: C1, C2, C22, D4, C23, D5, D8, C2xD4, D10, C2xD8, D20, C22xD5, C16:C22, D40, C2xD20, C2xD40, D80:C2

Smallest permutation representation of D80:C2
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 80)(2 79)(3 78)(4 77)(5 76)(6 75)(7 74)(8 73)(9 72)(10 71)(11 70)(12 69)(13 68)(14 67)(15 66)(16 65)(17 64)(18 63)(19 62)(20 61)(21 60)(22 59)(23 58)(24 57)(25 56)(26 55)(27 54)(28 53)(29 52)(30 51)(31 50)(32 49)(33 48)(34 47)(35 46)(36 45)(37 44)(38 43)(39 42)(40 41)
(2 42)(4 44)(6 46)(8 48)(10 50)(12 52)(14 54)(16 56)(18 58)(20 60)(22 62)(24 64)(26 66)(28 68)(30 70)(32 72)(34 74)(36 76)(38 78)(40 80)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,80)(2,79)(3,78)(4,77)(5,76)(6,75)(7,74)(8,73)(9,72)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,63)(19,62)(20,61)(21,60)(22,59)(23,58)(24,57)(25,56)(26,55)(27,54)(28,53)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41), (2,42)(4,44)(6,46)(8,48)(10,50)(12,52)(14,54)(16,56)(18,58)(20,60)(22,62)(24,64)(26,66)(28,68)(30,70)(32,72)(34,74)(36,76)(38,78)(40,80)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,80)(2,79)(3,78)(4,77)(5,76)(6,75)(7,74)(8,73)(9,72)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,63)(19,62)(20,61)(21,60)(22,59)(23,58)(24,57)(25,56)(26,55)(27,54)(28,53)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41), (2,42)(4,44)(6,46)(8,48)(10,50)(12,52)(14,54)(16,56)(18,58)(20,60)(22,62)(24,64)(26,66)(28,68)(30,70)(32,72)(34,74)(36,76)(38,78)(40,80) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,80),(2,79),(3,78),(4,77),(5,76),(6,75),(7,74),(8,73),(9,72),(10,71),(11,70),(12,69),(13,68),(14,67),(15,66),(16,65),(17,64),(18,63),(19,62),(20,61),(21,60),(22,59),(23,58),(24,57),(25,56),(26,55),(27,54),(28,53),(29,52),(30,51),(31,50),(32,49),(33,48),(34,47),(35,46),(36,45),(37,44),(38,43),(39,42),(40,41)], [(2,42),(4,44),(6,46),(8,48),(10,50),(12,52),(14,54),(16,56),(18,58),(20,60),(22,62),(24,64),(26,66),(28,68),(30,70),(32,72),(34,74),(36,76),(38,78),(40,80)]])

56 conjugacy classes

class 1 2A2B2C2D2E4A4B4C5A5B8A8B8C10A10B10C10D16A16B16C16D20A20B20C20D20E20F40A···40H40I40J40K40L80A···80P
order12222244455888101010101616161620202020202040···404040404080···80
size112404040224022224224444442222442···244444···4

56 irreducible representations

dim1111112222222222244
type+++++++++++++++++++
imageC1C2C2C2C2C2D4D4D5D8D8D10D10D20D20D40D40C16:C22D80:C2
kernelD80:C2D80C16:D5C5xM5(2)C2xD40D40:7C2C40C2xC20M5(2)C20C2xC10C16C2xC8C8C2xC4C4C22C5C1
# reps1221111122242448828

Matrix representation of D80:C2 in GL4(F241) generated by

95102
17227239104
1474215215
1810451231
,
20265382
33142238238
17320469209
23726369
,
1000
0100
312262400
2321900240
G:=sub<GL(4,GF(241))| [9,17,147,18,51,227,42,104,0,239,15,51,2,104,215,231],[202,33,173,237,65,142,204,2,3,238,69,63,82,238,209,69],[1,0,31,232,0,1,226,190,0,0,240,0,0,0,0,240] >;

D80:C2 in GAP, Magma, Sage, TeX

D_{80}\rtimes C_2
% in TeX

G:=Group("D80:C2");
// GroupNames label

G:=SmallGroup(320,535);
// by ID

G=gap.SmallGroup(320,535);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,254,387,142,675,192,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^80=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^41,c*b*c=a^40*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<