metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: D40, C5⋊1D8, C8⋊1D5, C40⋊1C2, D20⋊1C2, C4.9D10, C2.4D20, C10.2D4, C20.9C22, sometimes denoted D80 or Dih40 or Dih80, SmallGroup(80,7)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D40
G = < a,b | a40=b2=1, bab=a-1 >
Character table of D40
class | 1 | 2A | 2B | 2C | 4 | 5A | 5B | 8A | 8B | 10A | 10B | 20A | 20B | 20C | 20D | 40A | 40B | 40C | 40D | 40E | 40F | 40G | 40H | |
size | 1 | 1 | 20 | 20 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 0 | 0 | 2 | -1+√5/2 | -1-√5/2 | -2 | -2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ7 | 2 | 2 | 0 | 0 | 2 | -1+√5/2 | -1-√5/2 | 2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ8 | 2 | 2 | 0 | 0 | 2 | -1-√5/2 | -1+√5/2 | -2 | -2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ9 | 2 | 2 | 0 | 0 | 2 | -1-√5/2 | -1+√5/2 | 2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ10 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -√2 | √2 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ11 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | √2 | -√2 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 0 | 0 | -2 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | orthogonal lifted from D20 |
ρ13 | 2 | 2 | 0 | 0 | -2 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | orthogonal lifted from D20 |
ρ14 | 2 | 2 | 0 | 0 | -2 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | orthogonal lifted from D20 |
ρ15 | 2 | 2 | 0 | 0 | -2 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | orthogonal lifted from D20 |
ρ16 | 2 | -2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -√2 | √2 | 1+√5/2 | 1-√5/2 | -ζ82ζ53+ζ82ζ52 | -ζ86ζ54+ζ86ζ5 | ζ86ζ54-ζ86ζ5 | ζ82ζ53-ζ82ζ52 | -ζ83ζ53+ζ8ζ52 | -ζ83ζ52+ζ8ζ53 | ζ83ζ52-ζ8ζ53 | -ζ87ζ54+ζ85ζ5 | ζ83ζ5-ζ8ζ54 | ζ83ζ53-ζ8ζ52 | ζ87ζ54-ζ85ζ5 | -ζ83ζ5+ζ8ζ54 | orthogonal faithful |
ρ17 | 2 | -2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -√2 | √2 | 1-√5/2 | 1+√5/2 | ζ86ζ54-ζ86ζ5 | -ζ82ζ53+ζ82ζ52 | ζ82ζ53-ζ82ζ52 | -ζ86ζ54+ζ86ζ5 | ζ87ζ54-ζ85ζ5 | -ζ83ζ5+ζ8ζ54 | ζ83ζ5-ζ8ζ54 | ζ83ζ52-ζ8ζ53 | ζ83ζ53-ζ8ζ52 | -ζ87ζ54+ζ85ζ5 | -ζ83ζ52+ζ8ζ53 | -ζ83ζ53+ζ8ζ52 | orthogonal faithful |
ρ18 | 2 | -2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | √2 | -√2 | 1+√5/2 | 1-√5/2 | ζ82ζ53-ζ82ζ52 | ζ86ζ54-ζ86ζ5 | -ζ86ζ54+ζ86ζ5 | -ζ82ζ53+ζ82ζ52 | ζ83ζ52-ζ8ζ53 | ζ83ζ53-ζ8ζ52 | -ζ83ζ53+ζ8ζ52 | -ζ83ζ5+ζ8ζ54 | ζ87ζ54-ζ85ζ5 | -ζ83ζ52+ζ8ζ53 | ζ83ζ5-ζ8ζ54 | -ζ87ζ54+ζ85ζ5 | orthogonal faithful |
ρ19 | 2 | -2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | √2 | -√2 | 1-√5/2 | 1+√5/2 | ζ86ζ54-ζ86ζ5 | -ζ82ζ53+ζ82ζ52 | ζ82ζ53-ζ82ζ52 | -ζ86ζ54+ζ86ζ5 | -ζ87ζ54+ζ85ζ5 | ζ83ζ5-ζ8ζ54 | -ζ83ζ5+ζ8ζ54 | -ζ83ζ52+ζ8ζ53 | -ζ83ζ53+ζ8ζ52 | ζ87ζ54-ζ85ζ5 | ζ83ζ52-ζ8ζ53 | ζ83ζ53-ζ8ζ52 | orthogonal faithful |
ρ20 | 2 | -2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | √2 | -√2 | 1-√5/2 | 1+√5/2 | -ζ86ζ54+ζ86ζ5 | ζ82ζ53-ζ82ζ52 | -ζ82ζ53+ζ82ζ52 | ζ86ζ54-ζ86ζ5 | ζ83ζ5-ζ8ζ54 | -ζ87ζ54+ζ85ζ5 | ζ87ζ54-ζ85ζ5 | -ζ83ζ53+ζ8ζ52 | -ζ83ζ52+ζ8ζ53 | -ζ83ζ5+ζ8ζ54 | ζ83ζ53-ζ8ζ52 | ζ83ζ52-ζ8ζ53 | orthogonal faithful |
ρ21 | 2 | -2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -√2 | √2 | 1-√5/2 | 1+√5/2 | -ζ86ζ54+ζ86ζ5 | ζ82ζ53-ζ82ζ52 | -ζ82ζ53+ζ82ζ52 | ζ86ζ54-ζ86ζ5 | -ζ83ζ5+ζ8ζ54 | ζ87ζ54-ζ85ζ5 | -ζ87ζ54+ζ85ζ5 | ζ83ζ53-ζ8ζ52 | ζ83ζ52-ζ8ζ53 | ζ83ζ5-ζ8ζ54 | -ζ83ζ53+ζ8ζ52 | -ζ83ζ52+ζ8ζ53 | orthogonal faithful |
ρ22 | 2 | -2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -√2 | √2 | 1+√5/2 | 1-√5/2 | ζ82ζ53-ζ82ζ52 | ζ86ζ54-ζ86ζ5 | -ζ86ζ54+ζ86ζ5 | -ζ82ζ53+ζ82ζ52 | -ζ83ζ52+ζ8ζ53 | -ζ83ζ53+ζ8ζ52 | ζ83ζ53-ζ8ζ52 | ζ83ζ5-ζ8ζ54 | -ζ87ζ54+ζ85ζ5 | ζ83ζ52-ζ8ζ53 | -ζ83ζ5+ζ8ζ54 | ζ87ζ54-ζ85ζ5 | orthogonal faithful |
ρ23 | 2 | -2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | √2 | -√2 | 1+√5/2 | 1-√5/2 | -ζ82ζ53+ζ82ζ52 | -ζ86ζ54+ζ86ζ5 | ζ86ζ54-ζ86ζ5 | ζ82ζ53-ζ82ζ52 | ζ83ζ53-ζ8ζ52 | ζ83ζ52-ζ8ζ53 | -ζ83ζ52+ζ8ζ53 | ζ87ζ54-ζ85ζ5 | -ζ83ζ5+ζ8ζ54 | -ζ83ζ53+ζ8ζ52 | -ζ87ζ54+ζ85ζ5 | ζ83ζ5-ζ8ζ54 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 40)(2 39)(3 38)(4 37)(5 36)(6 35)(7 34)(8 33)(9 32)(10 31)(11 30)(12 29)(13 28)(14 27)(15 26)(16 25)(17 24)(18 23)(19 22)(20 21)
G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,40),(2,39),(3,38),(4,37),(5,36),(6,35),(7,34),(8,33),(9,32),(10,31),(11,30),(12,29),(13,28),(14,27),(15,26),(16,25),(17,24),(18,23),(19,22),(20,21)]])
D40 is a maximal subgroup of
D80 C16⋊D5 C5⋊D16 C5⋊SD32 D40⋊7C2 C8⋊D10 D5×D8 D40⋊C2 Q8.D10 C3⋊D40 D120 D200 C5⋊D40 C52⋊5D8
D40 is a maximal quotient of
D80 C16⋊D5 Dic40 C40⋊5C4 D20⋊5C4 C3⋊D40 D120 D200 C5⋊D40 C52⋊5D8
Matrix representation of D40 ►in GL2(𝔽41) generated by
5 | 3 |
38 | 23 |
12 | 18 |
8 | 29 |
G:=sub<GL(2,GF(41))| [5,38,3,23],[12,8,18,29] >;
D40 in GAP, Magma, Sage, TeX
D_{40}
% in TeX
G:=Group("D40");
// GroupNames label
G:=SmallGroup(80,7);
// by ID
G=gap.SmallGroup(80,7);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,61,66,182,42,1604]);
// Polycyclic
G:=Group<a,b|a^40=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D40 in TeX
Character table of D40 in TeX