Extensions 1→N→G→Q→1 with N=C4 and Q=Dic20

Direct product G=N×Q with N=C4 and Q=Dic20
dρLabelID
C4×Dic20320C4xDic20320,325

Semidirect products G=N:Q with N=C4 and Q=Dic20
extensionφ:Q→Aut NdρLabelID
C41Dic20 = C204Q16φ: Dic20/C40C2 ⊆ Aut C4320C4:1Dic20320,326
C42Dic20 = C4⋊Dic20φ: Dic20/Dic10C2 ⊆ Aut C4320C4:2Dic20320,476

Non-split extensions G=N.Q with N=C4 and Q=Dic20
extensionφ:Q→Aut NdρLabelID
C4.1Dic20 = C8013C4φ: Dic20/C40C2 ⊆ Aut C4320C4.1Dic20320,62
C4.2Dic20 = C8014C4φ: Dic20/C40C2 ⊆ Aut C4320C4.2Dic20320,63
C4.3Dic20 = C20.14Q16φ: Dic20/C40C2 ⊆ Aut C4320C4.3Dic20320,308
C4.4Dic20 = C408Q8φ: Dic20/C40C2 ⊆ Aut C4320C4.4Dic20320,309
C4.5Dic20 = C4.Dic20φ: Dic20/Dic10C2 ⊆ Aut C4320C4.5Dic20320,39
C4.6Dic20 = C20.47D8φ: Dic20/Dic10C2 ⊆ Aut C4320C4.6Dic20320,40
C4.7Dic20 = C20.7Q16φ: Dic20/Dic10C2 ⊆ Aut C4320C4.7Dic20320,477
C4.8Dic20 = Dic103C8central extension (φ=1)320C4.8Dic20320,14
C4.9Dic20 = C405C8central extension (φ=1)320C4.9Dic20320,16

׿
×
𝔽