metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: Dic20, C8.D5, C5⋊1Q16, C40.1C2, C2.5D20, C10.3D4, C4.10D10, C20.10C22, Dic10.1C2, SmallGroup(80,8)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic20
G = < a,b | a40=1, b2=a20, bab-1=a-1 >
Character table of Dic20
class | 1 | 2 | 4A | 4B | 4C | 5A | 5B | 8A | 8B | 10A | 10B | 20A | 20B | 20C | 20D | 40A | 40B | 40C | 40D | 40E | 40F | 40G | 40H | |
size | 1 | 1 | 2 | 20 | 20 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ7 | 2 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -2 | -2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ8 | 2 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -2 | -2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ10 | 2 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | orthogonal lifted from D20 |
ρ11 | 2 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | orthogonal lifted from D20 |
ρ12 | 2 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | orthogonal lifted from D20 |
ρ13 | 2 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | orthogonal lifted from D20 |
ρ14 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -√2 | √2 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | √2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | √2 | -√2 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | -√2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | √2 | -√2 | 1-√5/2 | 1+√5/2 | ζ82ζ53-ζ82ζ52 | ζ86ζ54-ζ86ζ5 | -ζ86ζ54+ζ86ζ5 | -ζ82ζ53+ζ82ζ52 | -ζ83ζ52+ζ8ζ53 | -ζ83ζ53+ζ8ζ52 | ζ83ζ53-ζ8ζ52 | -ζ87ζ5+ζ85ζ54 | ζ83ζ54-ζ8ζ5 | ζ83ζ52-ζ8ζ53 | ζ87ζ5-ζ85ζ54 | -ζ83ζ54+ζ8ζ5 | symplectic faithful, Schur index 2 |
ρ17 | 2 | -2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -√2 | √2 | 1-√5/2 | 1+√5/2 | -ζ82ζ53+ζ82ζ52 | -ζ86ζ54+ζ86ζ5 | ζ86ζ54-ζ86ζ5 | ζ82ζ53-ζ82ζ52 | ζ83ζ53-ζ8ζ52 | ζ83ζ52-ζ8ζ53 | -ζ83ζ52+ζ8ζ53 | -ζ83ζ54+ζ8ζ5 | ζ87ζ5-ζ85ζ54 | -ζ83ζ53+ζ8ζ52 | ζ83ζ54-ζ8ζ5 | -ζ87ζ5+ζ85ζ54 | symplectic faithful, Schur index 2 |
ρ18 | 2 | -2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -√2 | √2 | 1+√5/2 | 1-√5/2 | -ζ86ζ54+ζ86ζ5 | ζ82ζ53-ζ82ζ52 | -ζ82ζ53+ζ82ζ52 | ζ86ζ54-ζ86ζ5 | -ζ87ζ5+ζ85ζ54 | ζ83ζ54-ζ8ζ5 | -ζ83ζ54+ζ8ζ5 | -ζ83ζ53+ζ8ζ52 | -ζ83ζ52+ζ8ζ53 | ζ87ζ5-ζ85ζ54 | ζ83ζ53-ζ8ζ52 | ζ83ζ52-ζ8ζ53 | symplectic faithful, Schur index 2 |
ρ19 | 2 | -2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | √2 | -√2 | 1+√5/2 | 1-√5/2 | -ζ86ζ54+ζ86ζ5 | ζ82ζ53-ζ82ζ52 | -ζ82ζ53+ζ82ζ52 | ζ86ζ54-ζ86ζ5 | ζ87ζ5-ζ85ζ54 | -ζ83ζ54+ζ8ζ5 | ζ83ζ54-ζ8ζ5 | ζ83ζ53-ζ8ζ52 | ζ83ζ52-ζ8ζ53 | -ζ87ζ5+ζ85ζ54 | -ζ83ζ53+ζ8ζ52 | -ζ83ζ52+ζ8ζ53 | symplectic faithful, Schur index 2 |
ρ20 | 2 | -2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -√2 | √2 | 1+√5/2 | 1-√5/2 | ζ86ζ54-ζ86ζ5 | -ζ82ζ53+ζ82ζ52 | ζ82ζ53-ζ82ζ52 | -ζ86ζ54+ζ86ζ5 | ζ83ζ54-ζ8ζ5 | -ζ87ζ5+ζ85ζ54 | ζ87ζ5-ζ85ζ54 | -ζ83ζ52+ζ8ζ53 | -ζ83ζ53+ζ8ζ52 | -ζ83ζ54+ζ8ζ5 | ζ83ζ52-ζ8ζ53 | ζ83ζ53-ζ8ζ52 | symplectic faithful, Schur index 2 |
ρ21 | 2 | -2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -√2 | √2 | 1-√5/2 | 1+√5/2 | ζ82ζ53-ζ82ζ52 | ζ86ζ54-ζ86ζ5 | -ζ86ζ54+ζ86ζ5 | -ζ82ζ53+ζ82ζ52 | ζ83ζ52-ζ8ζ53 | ζ83ζ53-ζ8ζ52 | -ζ83ζ53+ζ8ζ52 | ζ87ζ5-ζ85ζ54 | -ζ83ζ54+ζ8ζ5 | -ζ83ζ52+ζ8ζ53 | -ζ87ζ5+ζ85ζ54 | ζ83ζ54-ζ8ζ5 | symplectic faithful, Schur index 2 |
ρ22 | 2 | -2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | √2 | -√2 | 1-√5/2 | 1+√5/2 | -ζ82ζ53+ζ82ζ52 | -ζ86ζ54+ζ86ζ5 | ζ86ζ54-ζ86ζ5 | ζ82ζ53-ζ82ζ52 | -ζ83ζ53+ζ8ζ52 | -ζ83ζ52+ζ8ζ53 | ζ83ζ52-ζ8ζ53 | ζ83ζ54-ζ8ζ5 | -ζ87ζ5+ζ85ζ54 | ζ83ζ53-ζ8ζ52 | -ζ83ζ54+ζ8ζ5 | ζ87ζ5-ζ85ζ54 | symplectic faithful, Schur index 2 |
ρ23 | 2 | -2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | √2 | -√2 | 1+√5/2 | 1-√5/2 | ζ86ζ54-ζ86ζ5 | -ζ82ζ53+ζ82ζ52 | ζ82ζ53-ζ82ζ52 | -ζ86ζ54+ζ86ζ5 | -ζ83ζ54+ζ8ζ5 | ζ87ζ5-ζ85ζ54 | -ζ87ζ5+ζ85ζ54 | ζ83ζ52-ζ8ζ53 | ζ83ζ53-ζ8ζ52 | ζ83ζ54-ζ8ζ5 | -ζ83ζ52+ζ8ζ53 | -ζ83ζ53+ζ8ζ52 | symplectic faithful, Schur index 2 |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 56 21 76)(2 55 22 75)(3 54 23 74)(4 53 24 73)(5 52 25 72)(6 51 26 71)(7 50 27 70)(8 49 28 69)(9 48 29 68)(10 47 30 67)(11 46 31 66)(12 45 32 65)(13 44 33 64)(14 43 34 63)(15 42 35 62)(16 41 36 61)(17 80 37 60)(18 79 38 59)(19 78 39 58)(20 77 40 57)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,56,21,76)(2,55,22,75)(3,54,23,74)(4,53,24,73)(5,52,25,72)(6,51,26,71)(7,50,27,70)(8,49,28,69)(9,48,29,68)(10,47,30,67)(11,46,31,66)(12,45,32,65)(13,44,33,64)(14,43,34,63)(15,42,35,62)(16,41,36,61)(17,80,37,60)(18,79,38,59)(19,78,39,58)(20,77,40,57)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,56,21,76)(2,55,22,75)(3,54,23,74)(4,53,24,73)(5,52,25,72)(6,51,26,71)(7,50,27,70)(8,49,28,69)(9,48,29,68)(10,47,30,67)(11,46,31,66)(12,45,32,65)(13,44,33,64)(14,43,34,63)(15,42,35,62)(16,41,36,61)(17,80,37,60)(18,79,38,59)(19,78,39,58)(20,77,40,57) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,56,21,76),(2,55,22,75),(3,54,23,74),(4,53,24,73),(5,52,25,72),(6,51,26,71),(7,50,27,70),(8,49,28,69),(9,48,29,68),(10,47,30,67),(11,46,31,66),(12,45,32,65),(13,44,33,64),(14,43,34,63),(15,42,35,62),(16,41,36,61),(17,80,37,60),(18,79,38,59),(19,78,39,58),(20,77,40,57)]])
Dic20 is a maximal subgroup of
C16⋊D5 Dic40 D8.D5 C5⋊Q32 D40⋊7C2 C8.D10 D8⋊3D5 SD16⋊D5 D5×Q16 C3⋊Dic20 Dic60 Dic100 C52⋊3Q16 C40.D5
Dic20 is a maximal quotient of
C20.44D4 C40⋊5C4 C3⋊Dic20 Dic60 Dic100 C52⋊3Q16 C40.D5
Matrix representation of Dic20 ►in GL2(𝔽41) generated by
23 | 20 |
18 | 5 |
14 | 14 |
24 | 27 |
G:=sub<GL(2,GF(41))| [23,18,20,5],[14,24,14,27] >;
Dic20 in GAP, Magma, Sage, TeX
{\rm Dic}_{20}
% in TeX
G:=Group("Dic20");
// GroupNames label
G:=SmallGroup(80,8);
// by ID
G=gap.SmallGroup(80,8);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,40,61,66,182,42,1604]);
// Polycyclic
G:=Group<a,b|a^40=1,b^2=a^20,b*a*b^-1=a^-1>;
// generators/relations
Export
Subgroup lattice of Dic20 in TeX
Character table of Dic20 in TeX