Extensions 1→N→G→Q→1 with N=C3×D4 and Q=D7

Direct product G=N×Q with N=C3×D4 and Q=D7
dρLabelID
C3×D4×D7844C3xD4xD7336,178

Semidirect products G=N:Q with N=C3×D4 and Q=D7
extensionφ:Q→Out NdρLabelID
(C3×D4)⋊1D7 = D4⋊D21φ: D7/C7C2 ⊆ Out C3×D41684+(C3xD4):1D7336,101
(C3×D4)⋊2D7 = D4×D21φ: D7/C7C2 ⊆ Out C3×D4844+(C3xD4):2D7336,198
(C3×D4)⋊3D7 = D42D21φ: D7/C7C2 ⊆ Out C3×D41684-(C3xD4):3D7336,199
(C3×D4)⋊4D7 = C3×D4⋊D7φ: D7/C7C2 ⊆ Out C3×D41684(C3xD4):4D7336,69
(C3×D4)⋊5D7 = C3×D42D7φ: trivial image1684(C3xD4):5D7336,179

Non-split extensions G=N.Q with N=C3×D4 and Q=D7
extensionφ:Q→Out NdρLabelID
(C3×D4).1D7 = D4.D21φ: D7/C7C2 ⊆ Out C3×D41684-(C3xD4).1D7336,102
(C3×D4).2D7 = C3×D4.D7φ: D7/C7C2 ⊆ Out C3×D41684(C3xD4).2D7336,70

׿
×
𝔽