Copied to
clipboard

G = C3×D42D7order 336 = 24·3·7

Direct product of C3 and D42D7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×D42D7, Dic149C6, C12.40D14, C42.43C23, C84.40C22, (C4×D7)⋊7C6, (C7×D4)⋊9C6, (C3×D4)⋊5D7, D42(C3×D7), C7⋊D46C6, C4.5(C6×D7), (C12×D7)⋊7C2, (D4×C21)⋊6C2, (C2×C6).4D14, C2115(C4○D4), C28.26(C2×C6), (C2×Dic7)⋊9C6, (C6×Dic7)⋊9C2, D14.7(C2×C6), C22.1(C6×D7), (C3×Dic14)⋊9C2, Dic7.8(C2×C6), C6.43(C22×D7), (C2×C42).19C22, C14.20(C22×C6), (C6×D7).13C22, (C3×Dic7).15C22, C76(C3×C4○D4), C2.7(C2×C6×D7), (C3×C7⋊D4)⋊6C2, (C2×C14).13(C2×C6), SmallGroup(336,179)

Series: Derived Chief Lower central Upper central

C1C14 — C3×D42D7
C1C7C14C42C6×D7C12×D7 — C3×D42D7
C7C14 — C3×D42D7
C1C6C3×D4

Generators and relations for C3×D42D7
 G = < a,b,c,d,e | a3=b4=c2=d7=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b2c, ede=d-1 >

Subgroups: 248 in 80 conjugacy classes, 46 normal (26 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C7, C2×C4, D4, D4, Q8, C12, C12, C2×C6, C2×C6, D7, C14, C14, C4○D4, C21, C2×C12, C3×D4, C3×D4, C3×Q8, Dic7, Dic7, C28, D14, C2×C14, C3×D7, C42, C42, C3×C4○D4, Dic14, C4×D7, C2×Dic7, C7⋊D4, C7×D4, C3×Dic7, C3×Dic7, C84, C6×D7, C2×C42, D42D7, C3×Dic14, C12×D7, C6×Dic7, C3×C7⋊D4, D4×C21, C3×D42D7
Quotients: C1, C2, C3, C22, C6, C23, C2×C6, D7, C4○D4, C22×C6, D14, C3×D7, C3×C4○D4, C22×D7, C6×D7, D42D7, C2×C6×D7, C3×D42D7

Smallest permutation representation of C3×D42D7
On 168 points
Generators in S168
(1 29 15)(2 30 16)(3 31 17)(4 32 18)(5 33 19)(6 34 20)(7 35 21)(8 36 22)(9 37 23)(10 38 24)(11 39 25)(12 40 26)(13 41 27)(14 42 28)(43 71 57)(44 72 58)(45 73 59)(46 74 60)(47 75 61)(48 76 62)(49 77 63)(50 78 64)(51 79 65)(52 80 66)(53 81 67)(54 82 68)(55 83 69)(56 84 70)(85 113 99)(86 114 100)(87 115 101)(88 116 102)(89 117 103)(90 118 104)(91 119 105)(92 120 106)(93 121 107)(94 122 108)(95 123 109)(96 124 110)(97 125 111)(98 126 112)(127 155 141)(128 156 142)(129 157 143)(130 158 144)(131 159 145)(132 160 146)(133 161 147)(134 162 148)(135 163 149)(136 164 150)(137 165 151)(138 166 152)(139 167 153)(140 168 154)
(1 92 8 85)(2 93 9 86)(3 94 10 87)(4 95 11 88)(5 96 12 89)(6 97 13 90)(7 98 14 91)(15 106 22 99)(16 107 23 100)(17 108 24 101)(18 109 25 102)(19 110 26 103)(20 111 27 104)(21 112 28 105)(29 120 36 113)(30 121 37 114)(31 122 38 115)(32 123 39 116)(33 124 40 117)(34 125 41 118)(35 126 42 119)(43 134 50 127)(44 135 51 128)(45 136 52 129)(46 137 53 130)(47 138 54 131)(48 139 55 132)(49 140 56 133)(57 148 64 141)(58 149 65 142)(59 150 66 143)(60 151 67 144)(61 152 68 145)(62 153 69 146)(63 154 70 147)(71 162 78 155)(72 163 79 156)(73 164 80 157)(74 165 81 158)(75 166 82 159)(76 167 83 160)(77 168 84 161)
(1 127)(2 128)(3 129)(4 130)(5 131)(6 132)(7 133)(8 134)(9 135)(10 136)(11 137)(12 138)(13 139)(14 140)(15 141)(16 142)(17 143)(18 144)(19 145)(20 146)(21 147)(22 148)(23 149)(24 150)(25 151)(26 152)(27 153)(28 154)(29 155)(30 156)(31 157)(32 158)(33 159)(34 160)(35 161)(36 162)(37 163)(38 164)(39 165)(40 166)(41 167)(42 168)(43 85)(44 86)(45 87)(46 88)(47 89)(48 90)(49 91)(50 92)(51 93)(52 94)(53 95)(54 96)(55 97)(56 98)(57 99)(58 100)(59 101)(60 102)(61 103)(62 104)(63 105)(64 106)(65 107)(66 108)(67 109)(68 110)(69 111)(70 112)(71 113)(72 114)(73 115)(74 116)(75 117)(76 118)(77 119)(78 120)(79 121)(80 122)(81 123)(82 124)(83 125)(84 126)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)(127 128 129 130 131 132 133)(134 135 136 137 138 139 140)(141 142 143 144 145 146 147)(148 149 150 151 152 153 154)(155 156 157 158 159 160 161)(162 163 164 165 166 167 168)
(1 7)(2 6)(3 5)(8 14)(9 13)(10 12)(15 21)(16 20)(17 19)(22 28)(23 27)(24 26)(29 35)(30 34)(31 33)(36 42)(37 41)(38 40)(43 56)(44 55)(45 54)(46 53)(47 52)(48 51)(49 50)(57 70)(58 69)(59 68)(60 67)(61 66)(62 65)(63 64)(71 84)(72 83)(73 82)(74 81)(75 80)(76 79)(77 78)(85 91)(86 90)(87 89)(92 98)(93 97)(94 96)(99 105)(100 104)(101 103)(106 112)(107 111)(108 110)(113 119)(114 118)(115 117)(120 126)(121 125)(122 124)(127 140)(128 139)(129 138)(130 137)(131 136)(132 135)(133 134)(141 154)(142 153)(143 152)(144 151)(145 150)(146 149)(147 148)(155 168)(156 167)(157 166)(158 165)(159 164)(160 163)(161 162)

G:=sub<Sym(168)| (1,29,15)(2,30,16)(3,31,17)(4,32,18)(5,33,19)(6,34,20)(7,35,21)(8,36,22)(9,37,23)(10,38,24)(11,39,25)(12,40,26)(13,41,27)(14,42,28)(43,71,57)(44,72,58)(45,73,59)(46,74,60)(47,75,61)(48,76,62)(49,77,63)(50,78,64)(51,79,65)(52,80,66)(53,81,67)(54,82,68)(55,83,69)(56,84,70)(85,113,99)(86,114,100)(87,115,101)(88,116,102)(89,117,103)(90,118,104)(91,119,105)(92,120,106)(93,121,107)(94,122,108)(95,123,109)(96,124,110)(97,125,111)(98,126,112)(127,155,141)(128,156,142)(129,157,143)(130,158,144)(131,159,145)(132,160,146)(133,161,147)(134,162,148)(135,163,149)(136,164,150)(137,165,151)(138,166,152)(139,167,153)(140,168,154), (1,92,8,85)(2,93,9,86)(3,94,10,87)(4,95,11,88)(5,96,12,89)(6,97,13,90)(7,98,14,91)(15,106,22,99)(16,107,23,100)(17,108,24,101)(18,109,25,102)(19,110,26,103)(20,111,27,104)(21,112,28,105)(29,120,36,113)(30,121,37,114)(31,122,38,115)(32,123,39,116)(33,124,40,117)(34,125,41,118)(35,126,42,119)(43,134,50,127)(44,135,51,128)(45,136,52,129)(46,137,53,130)(47,138,54,131)(48,139,55,132)(49,140,56,133)(57,148,64,141)(58,149,65,142)(59,150,66,143)(60,151,67,144)(61,152,68,145)(62,153,69,146)(63,154,70,147)(71,162,78,155)(72,163,79,156)(73,164,80,157)(74,165,81,158)(75,166,82,159)(76,167,83,160)(77,168,84,161), (1,127)(2,128)(3,129)(4,130)(5,131)(6,132)(7,133)(8,134)(9,135)(10,136)(11,137)(12,138)(13,139)(14,140)(15,141)(16,142)(17,143)(18,144)(19,145)(20,146)(21,147)(22,148)(23,149)(24,150)(25,151)(26,152)(27,153)(28,154)(29,155)(30,156)(31,157)(32,158)(33,159)(34,160)(35,161)(36,162)(37,163)(38,164)(39,165)(40,166)(41,167)(42,168)(43,85)(44,86)(45,87)(46,88)(47,89)(48,90)(49,91)(50,92)(51,93)(52,94)(53,95)(54,96)(55,97)(56,98)(57,99)(58,100)(59,101)(60,102)(61,103)(62,104)(63,105)(64,106)(65,107)(66,108)(67,109)(68,110)(69,111)(70,112)(71,113)(72,114)(73,115)(74,116)(75,117)(76,118)(77,119)(78,120)(79,121)(80,122)(81,123)(82,124)(83,125)(84,126), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168), (1,7)(2,6)(3,5)(8,14)(9,13)(10,12)(15,21)(16,20)(17,19)(22,28)(23,27)(24,26)(29,35)(30,34)(31,33)(36,42)(37,41)(38,40)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,64)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)(85,91)(86,90)(87,89)(92,98)(93,97)(94,96)(99,105)(100,104)(101,103)(106,112)(107,111)(108,110)(113,119)(114,118)(115,117)(120,126)(121,125)(122,124)(127,140)(128,139)(129,138)(130,137)(131,136)(132,135)(133,134)(141,154)(142,153)(143,152)(144,151)(145,150)(146,149)(147,148)(155,168)(156,167)(157,166)(158,165)(159,164)(160,163)(161,162)>;

G:=Group( (1,29,15)(2,30,16)(3,31,17)(4,32,18)(5,33,19)(6,34,20)(7,35,21)(8,36,22)(9,37,23)(10,38,24)(11,39,25)(12,40,26)(13,41,27)(14,42,28)(43,71,57)(44,72,58)(45,73,59)(46,74,60)(47,75,61)(48,76,62)(49,77,63)(50,78,64)(51,79,65)(52,80,66)(53,81,67)(54,82,68)(55,83,69)(56,84,70)(85,113,99)(86,114,100)(87,115,101)(88,116,102)(89,117,103)(90,118,104)(91,119,105)(92,120,106)(93,121,107)(94,122,108)(95,123,109)(96,124,110)(97,125,111)(98,126,112)(127,155,141)(128,156,142)(129,157,143)(130,158,144)(131,159,145)(132,160,146)(133,161,147)(134,162,148)(135,163,149)(136,164,150)(137,165,151)(138,166,152)(139,167,153)(140,168,154), (1,92,8,85)(2,93,9,86)(3,94,10,87)(4,95,11,88)(5,96,12,89)(6,97,13,90)(7,98,14,91)(15,106,22,99)(16,107,23,100)(17,108,24,101)(18,109,25,102)(19,110,26,103)(20,111,27,104)(21,112,28,105)(29,120,36,113)(30,121,37,114)(31,122,38,115)(32,123,39,116)(33,124,40,117)(34,125,41,118)(35,126,42,119)(43,134,50,127)(44,135,51,128)(45,136,52,129)(46,137,53,130)(47,138,54,131)(48,139,55,132)(49,140,56,133)(57,148,64,141)(58,149,65,142)(59,150,66,143)(60,151,67,144)(61,152,68,145)(62,153,69,146)(63,154,70,147)(71,162,78,155)(72,163,79,156)(73,164,80,157)(74,165,81,158)(75,166,82,159)(76,167,83,160)(77,168,84,161), (1,127)(2,128)(3,129)(4,130)(5,131)(6,132)(7,133)(8,134)(9,135)(10,136)(11,137)(12,138)(13,139)(14,140)(15,141)(16,142)(17,143)(18,144)(19,145)(20,146)(21,147)(22,148)(23,149)(24,150)(25,151)(26,152)(27,153)(28,154)(29,155)(30,156)(31,157)(32,158)(33,159)(34,160)(35,161)(36,162)(37,163)(38,164)(39,165)(40,166)(41,167)(42,168)(43,85)(44,86)(45,87)(46,88)(47,89)(48,90)(49,91)(50,92)(51,93)(52,94)(53,95)(54,96)(55,97)(56,98)(57,99)(58,100)(59,101)(60,102)(61,103)(62,104)(63,105)(64,106)(65,107)(66,108)(67,109)(68,110)(69,111)(70,112)(71,113)(72,114)(73,115)(74,116)(75,117)(76,118)(77,119)(78,120)(79,121)(80,122)(81,123)(82,124)(83,125)(84,126), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168), (1,7)(2,6)(3,5)(8,14)(9,13)(10,12)(15,21)(16,20)(17,19)(22,28)(23,27)(24,26)(29,35)(30,34)(31,33)(36,42)(37,41)(38,40)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,64)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)(85,91)(86,90)(87,89)(92,98)(93,97)(94,96)(99,105)(100,104)(101,103)(106,112)(107,111)(108,110)(113,119)(114,118)(115,117)(120,126)(121,125)(122,124)(127,140)(128,139)(129,138)(130,137)(131,136)(132,135)(133,134)(141,154)(142,153)(143,152)(144,151)(145,150)(146,149)(147,148)(155,168)(156,167)(157,166)(158,165)(159,164)(160,163)(161,162) );

G=PermutationGroup([[(1,29,15),(2,30,16),(3,31,17),(4,32,18),(5,33,19),(6,34,20),(7,35,21),(8,36,22),(9,37,23),(10,38,24),(11,39,25),(12,40,26),(13,41,27),(14,42,28),(43,71,57),(44,72,58),(45,73,59),(46,74,60),(47,75,61),(48,76,62),(49,77,63),(50,78,64),(51,79,65),(52,80,66),(53,81,67),(54,82,68),(55,83,69),(56,84,70),(85,113,99),(86,114,100),(87,115,101),(88,116,102),(89,117,103),(90,118,104),(91,119,105),(92,120,106),(93,121,107),(94,122,108),(95,123,109),(96,124,110),(97,125,111),(98,126,112),(127,155,141),(128,156,142),(129,157,143),(130,158,144),(131,159,145),(132,160,146),(133,161,147),(134,162,148),(135,163,149),(136,164,150),(137,165,151),(138,166,152),(139,167,153),(140,168,154)], [(1,92,8,85),(2,93,9,86),(3,94,10,87),(4,95,11,88),(5,96,12,89),(6,97,13,90),(7,98,14,91),(15,106,22,99),(16,107,23,100),(17,108,24,101),(18,109,25,102),(19,110,26,103),(20,111,27,104),(21,112,28,105),(29,120,36,113),(30,121,37,114),(31,122,38,115),(32,123,39,116),(33,124,40,117),(34,125,41,118),(35,126,42,119),(43,134,50,127),(44,135,51,128),(45,136,52,129),(46,137,53,130),(47,138,54,131),(48,139,55,132),(49,140,56,133),(57,148,64,141),(58,149,65,142),(59,150,66,143),(60,151,67,144),(61,152,68,145),(62,153,69,146),(63,154,70,147),(71,162,78,155),(72,163,79,156),(73,164,80,157),(74,165,81,158),(75,166,82,159),(76,167,83,160),(77,168,84,161)], [(1,127),(2,128),(3,129),(4,130),(5,131),(6,132),(7,133),(8,134),(9,135),(10,136),(11,137),(12,138),(13,139),(14,140),(15,141),(16,142),(17,143),(18,144),(19,145),(20,146),(21,147),(22,148),(23,149),(24,150),(25,151),(26,152),(27,153),(28,154),(29,155),(30,156),(31,157),(32,158),(33,159),(34,160),(35,161),(36,162),(37,163),(38,164),(39,165),(40,166),(41,167),(42,168),(43,85),(44,86),(45,87),(46,88),(47,89),(48,90),(49,91),(50,92),(51,93),(52,94),(53,95),(54,96),(55,97),(56,98),(57,99),(58,100),(59,101),(60,102),(61,103),(62,104),(63,105),(64,106),(65,107),(66,108),(67,109),(68,110),(69,111),(70,112),(71,113),(72,114),(73,115),(74,116),(75,117),(76,118),(77,119),(78,120),(79,121),(80,122),(81,123),(82,124),(83,125),(84,126)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126),(127,128,129,130,131,132,133),(134,135,136,137,138,139,140),(141,142,143,144,145,146,147),(148,149,150,151,152,153,154),(155,156,157,158,159,160,161),(162,163,164,165,166,167,168)], [(1,7),(2,6),(3,5),(8,14),(9,13),(10,12),(15,21),(16,20),(17,19),(22,28),(23,27),(24,26),(29,35),(30,34),(31,33),(36,42),(37,41),(38,40),(43,56),(44,55),(45,54),(46,53),(47,52),(48,51),(49,50),(57,70),(58,69),(59,68),(60,67),(61,66),(62,65),(63,64),(71,84),(72,83),(73,82),(74,81),(75,80),(76,79),(77,78),(85,91),(86,90),(87,89),(92,98),(93,97),(94,96),(99,105),(100,104),(101,103),(106,112),(107,111),(108,110),(113,119),(114,118),(115,117),(120,126),(121,125),(122,124),(127,140),(128,139),(129,138),(130,137),(131,136),(132,135),(133,134),(141,154),(142,153),(143,152),(144,151),(145,150),(146,149),(147,148),(155,168),(156,167),(157,166),(158,165),(159,164),(160,163),(161,162)]])

75 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C4D4E6A6B6C6D6E6F6G6H7A7B7C12A12B12C12D12E12F12G12H12I12J14A14B14C14D···14I21A···21F28A28B28C42A···42F42G···42R84A···84F
order122223344444666666667771212121212121212121214141414···1421···2128282842···4242···4284···84
size1122141127714141122221414222227777141414142224···42···24442···24···44···4

75 irreducible representations

dim1111111111112222222244
type+++++++++-
imageC1C2C2C2C2C2C3C6C6C6C6C6D7C4○D4D14D14C3×D7C3×C4○D4C6×D7C6×D7D42D7C3×D42D7
kernelC3×D42D7C3×Dic14C12×D7C6×Dic7C3×C7⋊D4D4×C21D42D7Dic14C4×D7C2×Dic7C7⋊D4C7×D4C3×D4C21C12C2×C6D4C7C4C22C3C1
# reps11122122244232366461236

Matrix representation of C3×D42D7 in GL4(𝔽337) generated by

1000
0100
001280
000128
,
336000
033600
001890
00148148
,
1000
0100
0018941
00148148
,
30433600
30533600
0010
0001
,
22730300
22711000
0010
00336336
G:=sub<GL(4,GF(337))| [1,0,0,0,0,1,0,0,0,0,128,0,0,0,0,128],[336,0,0,0,0,336,0,0,0,0,189,148,0,0,0,148],[1,0,0,0,0,1,0,0,0,0,189,148,0,0,41,148],[304,305,0,0,336,336,0,0,0,0,1,0,0,0,0,1],[227,227,0,0,303,110,0,0,0,0,1,336,0,0,0,336] >;

C3×D42D7 in GAP, Magma, Sage, TeX

C_3\times D_4\rtimes_2D_7
% in TeX

G:=Group("C3xD4:2D7");
// GroupNames label

G:=SmallGroup(336,179);
// by ID

G=gap.SmallGroup(336,179);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-7,151,506,260,10373]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^7=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽