Copied to
clipboard

G = D42D21order 336 = 24·3·7

The semidirect product of D4 and D21 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D42D21, C4.5D42, C28.19D6, Dic423C2, C12.19D14, C84.5C22, C22.1D42, C42.33C23, D42.6C22, Dic21.16C22, (C3×D4)⋊3D7, (C7×D4)⋊3S3, (C4×D21)⋊2C2, (D4×C21)⋊3C2, C217D42C2, (C2×C6).3D14, (C2×C14).3D6, C2114(C4○D4), C75(D42S3), C35(D42D7), (C2×Dic21)⋊3C2, (C2×C42).1C22, C6.33(C22×D7), C2.7(C22×D21), C14.33(C22×S3), SmallGroup(336,199)

Series: Derived Chief Lower central Upper central

C1C42 — D42D21
C1C7C21C42D42C4×D21 — D42D21
C21C42 — D42D21
C1C2D4

Generators and relations for D42D21
 G = < a,b,c,d | a4=b2=c21=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 456 in 80 conjugacy classes, 35 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C7, C2×C4, D4, D4, Q8, Dic3, C12, D6, C2×C6, D7, C14, C14, C4○D4, C21, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3×D4, Dic7, C28, D14, C2×C14, D21, C42, C42, D42S3, Dic14, C4×D7, C2×Dic7, C7⋊D4, C7×D4, Dic21, Dic21, C84, D42, C2×C42, D42D7, Dic42, C4×D21, C2×Dic21, C217D4, D4×C21, D42D21
Quotients: C1, C2, C22, S3, C23, D6, D7, C4○D4, C22×S3, D14, D21, D42S3, C22×D7, D42, D42D7, C22×D21, D42D21

Smallest permutation representation of D42D21
On 168 points
Generators in S168
(1 116 23 90)(2 117 24 91)(3 118 25 92)(4 119 26 93)(5 120 27 94)(6 121 28 95)(7 122 29 96)(8 123 30 97)(9 124 31 98)(10 125 32 99)(11 126 33 100)(12 106 34 101)(13 107 35 102)(14 108 36 103)(15 109 37 104)(16 110 38 105)(17 111 39 85)(18 112 40 86)(19 113 41 87)(20 114 42 88)(21 115 22 89)(43 151 77 134)(44 152 78 135)(45 153 79 136)(46 154 80 137)(47 155 81 138)(48 156 82 139)(49 157 83 140)(50 158 84 141)(51 159 64 142)(52 160 65 143)(53 161 66 144)(54 162 67 145)(55 163 68 146)(56 164 69 147)(57 165 70 127)(58 166 71 128)(59 167 72 129)(60 168 73 130)(61 148 74 131)(62 149 75 132)(63 150 76 133)
(1 132)(2 133)(3 134)(4 135)(5 136)(6 137)(7 138)(8 139)(9 140)(10 141)(11 142)(12 143)(13 144)(14 145)(15 146)(16 147)(17 127)(18 128)(19 129)(20 130)(21 131)(22 148)(23 149)(24 150)(25 151)(26 152)(27 153)(28 154)(29 155)(30 156)(31 157)(32 158)(33 159)(34 160)(35 161)(36 162)(37 163)(38 164)(39 165)(40 166)(41 167)(42 168)(43 92)(44 93)(45 94)(46 95)(47 96)(48 97)(49 98)(50 99)(51 100)(52 101)(53 102)(54 103)(55 104)(56 105)(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 126)(65 106)(66 107)(67 108)(68 109)(69 110)(70 111)(71 112)(72 113)(73 114)(74 115)(75 116)(76 117)(77 118)(78 119)(79 120)(80 121)(81 122)(82 123)(83 124)(84 125)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147)(148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 21)(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(22 23)(24 42)(25 41)(26 40)(27 39)(28 38)(29 37)(30 36)(31 35)(32 34)(43 72)(44 71)(45 70)(46 69)(47 68)(48 67)(49 66)(50 65)(51 64)(52 84)(53 83)(54 82)(55 81)(56 80)(57 79)(58 78)(59 77)(60 76)(61 75)(62 74)(63 73)(85 94)(86 93)(87 92)(88 91)(89 90)(95 105)(96 104)(97 103)(98 102)(99 101)(106 125)(107 124)(108 123)(109 122)(110 121)(111 120)(112 119)(113 118)(114 117)(115 116)(127 153)(128 152)(129 151)(130 150)(131 149)(132 148)(133 168)(134 167)(135 166)(136 165)(137 164)(138 163)(139 162)(140 161)(141 160)(142 159)(143 158)(144 157)(145 156)(146 155)(147 154)

G:=sub<Sym(168)| (1,116,23,90)(2,117,24,91)(3,118,25,92)(4,119,26,93)(5,120,27,94)(6,121,28,95)(7,122,29,96)(8,123,30,97)(9,124,31,98)(10,125,32,99)(11,126,33,100)(12,106,34,101)(13,107,35,102)(14,108,36,103)(15,109,37,104)(16,110,38,105)(17,111,39,85)(18,112,40,86)(19,113,41,87)(20,114,42,88)(21,115,22,89)(43,151,77,134)(44,152,78,135)(45,153,79,136)(46,154,80,137)(47,155,81,138)(48,156,82,139)(49,157,83,140)(50,158,84,141)(51,159,64,142)(52,160,65,143)(53,161,66,144)(54,162,67,145)(55,163,68,146)(56,164,69,147)(57,165,70,127)(58,166,71,128)(59,167,72,129)(60,168,73,130)(61,148,74,131)(62,149,75,132)(63,150,76,133), (1,132)(2,133)(3,134)(4,135)(5,136)(6,137)(7,138)(8,139)(9,140)(10,141)(11,142)(12,143)(13,144)(14,145)(15,146)(16,147)(17,127)(18,128)(19,129)(20,130)(21,131)(22,148)(23,149)(24,150)(25,151)(26,152)(27,153)(28,154)(29,155)(30,156)(31,157)(32,158)(33,159)(34,160)(35,161)(36,162)(37,163)(38,164)(39,165)(40,166)(41,167)(42,168)(43,92)(44,93)(45,94)(46,95)(47,96)(48,97)(49,98)(50,99)(51,100)(52,101)(53,102)(54,103)(55,104)(56,105)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,126)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,113)(73,114)(74,115)(75,116)(76,117)(77,118)(78,119)(79,120)(80,121)(81,122)(82,123)(83,124)(84,125), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,23)(24,42)(25,41)(26,40)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)(43,72)(44,71)(45,70)(46,69)(47,68)(48,67)(49,66)(50,65)(51,64)(52,84)(53,83)(54,82)(55,81)(56,80)(57,79)(58,78)(59,77)(60,76)(61,75)(62,74)(63,73)(85,94)(86,93)(87,92)(88,91)(89,90)(95,105)(96,104)(97,103)(98,102)(99,101)(106,125)(107,124)(108,123)(109,122)(110,121)(111,120)(112,119)(113,118)(114,117)(115,116)(127,153)(128,152)(129,151)(130,150)(131,149)(132,148)(133,168)(134,167)(135,166)(136,165)(137,164)(138,163)(139,162)(140,161)(141,160)(142,159)(143,158)(144,157)(145,156)(146,155)(147,154)>;

G:=Group( (1,116,23,90)(2,117,24,91)(3,118,25,92)(4,119,26,93)(5,120,27,94)(6,121,28,95)(7,122,29,96)(8,123,30,97)(9,124,31,98)(10,125,32,99)(11,126,33,100)(12,106,34,101)(13,107,35,102)(14,108,36,103)(15,109,37,104)(16,110,38,105)(17,111,39,85)(18,112,40,86)(19,113,41,87)(20,114,42,88)(21,115,22,89)(43,151,77,134)(44,152,78,135)(45,153,79,136)(46,154,80,137)(47,155,81,138)(48,156,82,139)(49,157,83,140)(50,158,84,141)(51,159,64,142)(52,160,65,143)(53,161,66,144)(54,162,67,145)(55,163,68,146)(56,164,69,147)(57,165,70,127)(58,166,71,128)(59,167,72,129)(60,168,73,130)(61,148,74,131)(62,149,75,132)(63,150,76,133), (1,132)(2,133)(3,134)(4,135)(5,136)(6,137)(7,138)(8,139)(9,140)(10,141)(11,142)(12,143)(13,144)(14,145)(15,146)(16,147)(17,127)(18,128)(19,129)(20,130)(21,131)(22,148)(23,149)(24,150)(25,151)(26,152)(27,153)(28,154)(29,155)(30,156)(31,157)(32,158)(33,159)(34,160)(35,161)(36,162)(37,163)(38,164)(39,165)(40,166)(41,167)(42,168)(43,92)(44,93)(45,94)(46,95)(47,96)(48,97)(49,98)(50,99)(51,100)(52,101)(53,102)(54,103)(55,104)(56,105)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,126)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,113)(73,114)(74,115)(75,116)(76,117)(77,118)(78,119)(79,120)(80,121)(81,122)(82,123)(83,124)(84,125), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,23)(24,42)(25,41)(26,40)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)(43,72)(44,71)(45,70)(46,69)(47,68)(48,67)(49,66)(50,65)(51,64)(52,84)(53,83)(54,82)(55,81)(56,80)(57,79)(58,78)(59,77)(60,76)(61,75)(62,74)(63,73)(85,94)(86,93)(87,92)(88,91)(89,90)(95,105)(96,104)(97,103)(98,102)(99,101)(106,125)(107,124)(108,123)(109,122)(110,121)(111,120)(112,119)(113,118)(114,117)(115,116)(127,153)(128,152)(129,151)(130,150)(131,149)(132,148)(133,168)(134,167)(135,166)(136,165)(137,164)(138,163)(139,162)(140,161)(141,160)(142,159)(143,158)(144,157)(145,156)(146,155)(147,154) );

G=PermutationGroup([[(1,116,23,90),(2,117,24,91),(3,118,25,92),(4,119,26,93),(5,120,27,94),(6,121,28,95),(7,122,29,96),(8,123,30,97),(9,124,31,98),(10,125,32,99),(11,126,33,100),(12,106,34,101),(13,107,35,102),(14,108,36,103),(15,109,37,104),(16,110,38,105),(17,111,39,85),(18,112,40,86),(19,113,41,87),(20,114,42,88),(21,115,22,89),(43,151,77,134),(44,152,78,135),(45,153,79,136),(46,154,80,137),(47,155,81,138),(48,156,82,139),(49,157,83,140),(50,158,84,141),(51,159,64,142),(52,160,65,143),(53,161,66,144),(54,162,67,145),(55,163,68,146),(56,164,69,147),(57,165,70,127),(58,166,71,128),(59,167,72,129),(60,168,73,130),(61,148,74,131),(62,149,75,132),(63,150,76,133)], [(1,132),(2,133),(3,134),(4,135),(5,136),(6,137),(7,138),(8,139),(9,140),(10,141),(11,142),(12,143),(13,144),(14,145),(15,146),(16,147),(17,127),(18,128),(19,129),(20,130),(21,131),(22,148),(23,149),(24,150),(25,151),(26,152),(27,153),(28,154),(29,155),(30,156),(31,157),(32,158),(33,159),(34,160),(35,161),(36,162),(37,163),(38,164),(39,165),(40,166),(41,167),(42,168),(43,92),(44,93),(45,94),(46,95),(47,96),(48,97),(49,98),(50,99),(51,100),(52,101),(53,102),(54,103),(55,104),(56,105),(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,126),(65,106),(66,107),(67,108),(68,109),(69,110),(70,111),(71,112),(72,113),(73,114),(74,115),(75,116),(76,117),(77,118),(78,119),(79,120),(80,121),(81,122),(82,123),(83,124),(84,125)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147),(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,21),(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(22,23),(24,42),(25,41),(26,40),(27,39),(28,38),(29,37),(30,36),(31,35),(32,34),(43,72),(44,71),(45,70),(46,69),(47,68),(48,67),(49,66),(50,65),(51,64),(52,84),(53,83),(54,82),(55,81),(56,80),(57,79),(58,78),(59,77),(60,76),(61,75),(62,74),(63,73),(85,94),(86,93),(87,92),(88,91),(89,90),(95,105),(96,104),(97,103),(98,102),(99,101),(106,125),(107,124),(108,123),(109,122),(110,121),(111,120),(112,119),(113,118),(114,117),(115,116),(127,153),(128,152),(129,151),(130,150),(131,149),(132,148),(133,168),(134,167),(135,166),(136,165),(137,164),(138,163),(139,162),(140,161),(141,160),(142,159),(143,158),(144,157),(145,156),(146,155),(147,154)]])

60 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E6A6B6C7A7B7C 12 14A14B14C14D···14I21A···21F28A28B28C42A···42F42G···42R84A···84F
order122223444446667771214141414···1421···2128282842···4242···4284···84
size112242222121424224422242224···42···24442···24···44···4

60 irreducible representations

dim1111112222222222444
type+++++++++++++++---
imageC1C2C2C2C2C2S3D6D6D7C4○D4D14D14D21D42D42D42S3D42D7D42D21
kernelD42D21Dic42C4×D21C2×Dic21C217D4D4×C21C7×D4C28C2×C14C3×D4C21C12C2×C6D4C4C22C7C3C1
# reps11122111232366612136

Matrix representation of D42D21 in GL4(𝔽337) generated by

1000
0100
001480
000189
,
336000
033600
000189
001480
,
27827300
11223000
0010
0001
,
2303000
22510700
0010
000336
G:=sub<GL(4,GF(337))| [1,0,0,0,0,1,0,0,0,0,148,0,0,0,0,189],[336,0,0,0,0,336,0,0,0,0,0,148,0,0,189,0],[278,112,0,0,273,230,0,0,0,0,1,0,0,0,0,1],[230,225,0,0,30,107,0,0,0,0,1,0,0,0,0,336] >;

D42D21 in GAP, Magma, Sage, TeX

D_4\rtimes_2D_{21}
% in TeX

G:=Group("D4:2D21");
// GroupNames label

G:=SmallGroup(336,199);
// by ID

G=gap.SmallGroup(336,199);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,55,218,116,964,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^21=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽