metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4⋊2D21, C4.5D42, C28.19D6, Dic42⋊3C2, C12.19D14, C84.5C22, C22.1D42, C42.33C23, D42.6C22, Dic21.16C22, (C3×D4)⋊3D7, (C7×D4)⋊3S3, (C4×D21)⋊2C2, (D4×C21)⋊3C2, C21⋊7D4⋊2C2, (C2×C6).3D14, (C2×C14).3D6, C21⋊14(C4○D4), C7⋊5(D4⋊2S3), C3⋊5(D4⋊2D7), (C2×Dic21)⋊3C2, (C2×C42).1C22, C6.33(C22×D7), C2.7(C22×D21), C14.33(C22×S3), SmallGroup(336,199)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4⋊2D21
G = < a,b,c,d | a4=b2=c21=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=c-1 >
Subgroups: 456 in 80 conjugacy classes, 35 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C7, C2×C4, D4, D4, Q8, Dic3, C12, D6, C2×C6, D7, C14, C14, C4○D4, C21, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3×D4, Dic7, C28, D14, C2×C14, D21, C42, C42, D4⋊2S3, Dic14, C4×D7, C2×Dic7, C7⋊D4, C7×D4, Dic21, Dic21, C84, D42, C2×C42, D4⋊2D7, Dic42, C4×D21, C2×Dic21, C21⋊7D4, D4×C21, D4⋊2D21
Quotients: C1, C2, C22, S3, C23, D6, D7, C4○D4, C22×S3, D14, D21, D4⋊2S3, C22×D7, D42, D4⋊2D7, C22×D21, D4⋊2D21
(1 116 23 90)(2 117 24 91)(3 118 25 92)(4 119 26 93)(5 120 27 94)(6 121 28 95)(7 122 29 96)(8 123 30 97)(9 124 31 98)(10 125 32 99)(11 126 33 100)(12 106 34 101)(13 107 35 102)(14 108 36 103)(15 109 37 104)(16 110 38 105)(17 111 39 85)(18 112 40 86)(19 113 41 87)(20 114 42 88)(21 115 22 89)(43 151 77 134)(44 152 78 135)(45 153 79 136)(46 154 80 137)(47 155 81 138)(48 156 82 139)(49 157 83 140)(50 158 84 141)(51 159 64 142)(52 160 65 143)(53 161 66 144)(54 162 67 145)(55 163 68 146)(56 164 69 147)(57 165 70 127)(58 166 71 128)(59 167 72 129)(60 168 73 130)(61 148 74 131)(62 149 75 132)(63 150 76 133)
(1 132)(2 133)(3 134)(4 135)(5 136)(6 137)(7 138)(8 139)(9 140)(10 141)(11 142)(12 143)(13 144)(14 145)(15 146)(16 147)(17 127)(18 128)(19 129)(20 130)(21 131)(22 148)(23 149)(24 150)(25 151)(26 152)(27 153)(28 154)(29 155)(30 156)(31 157)(32 158)(33 159)(34 160)(35 161)(36 162)(37 163)(38 164)(39 165)(40 166)(41 167)(42 168)(43 92)(44 93)(45 94)(46 95)(47 96)(48 97)(49 98)(50 99)(51 100)(52 101)(53 102)(54 103)(55 104)(56 105)(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 126)(65 106)(66 107)(67 108)(68 109)(69 110)(70 111)(71 112)(72 113)(73 114)(74 115)(75 116)(76 117)(77 118)(78 119)(79 120)(80 121)(81 122)(82 123)(83 124)(84 125)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147)(148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 21)(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(22 23)(24 42)(25 41)(26 40)(27 39)(28 38)(29 37)(30 36)(31 35)(32 34)(43 72)(44 71)(45 70)(46 69)(47 68)(48 67)(49 66)(50 65)(51 64)(52 84)(53 83)(54 82)(55 81)(56 80)(57 79)(58 78)(59 77)(60 76)(61 75)(62 74)(63 73)(85 94)(86 93)(87 92)(88 91)(89 90)(95 105)(96 104)(97 103)(98 102)(99 101)(106 125)(107 124)(108 123)(109 122)(110 121)(111 120)(112 119)(113 118)(114 117)(115 116)(127 153)(128 152)(129 151)(130 150)(131 149)(132 148)(133 168)(134 167)(135 166)(136 165)(137 164)(138 163)(139 162)(140 161)(141 160)(142 159)(143 158)(144 157)(145 156)(146 155)(147 154)
G:=sub<Sym(168)| (1,116,23,90)(2,117,24,91)(3,118,25,92)(4,119,26,93)(5,120,27,94)(6,121,28,95)(7,122,29,96)(8,123,30,97)(9,124,31,98)(10,125,32,99)(11,126,33,100)(12,106,34,101)(13,107,35,102)(14,108,36,103)(15,109,37,104)(16,110,38,105)(17,111,39,85)(18,112,40,86)(19,113,41,87)(20,114,42,88)(21,115,22,89)(43,151,77,134)(44,152,78,135)(45,153,79,136)(46,154,80,137)(47,155,81,138)(48,156,82,139)(49,157,83,140)(50,158,84,141)(51,159,64,142)(52,160,65,143)(53,161,66,144)(54,162,67,145)(55,163,68,146)(56,164,69,147)(57,165,70,127)(58,166,71,128)(59,167,72,129)(60,168,73,130)(61,148,74,131)(62,149,75,132)(63,150,76,133), (1,132)(2,133)(3,134)(4,135)(5,136)(6,137)(7,138)(8,139)(9,140)(10,141)(11,142)(12,143)(13,144)(14,145)(15,146)(16,147)(17,127)(18,128)(19,129)(20,130)(21,131)(22,148)(23,149)(24,150)(25,151)(26,152)(27,153)(28,154)(29,155)(30,156)(31,157)(32,158)(33,159)(34,160)(35,161)(36,162)(37,163)(38,164)(39,165)(40,166)(41,167)(42,168)(43,92)(44,93)(45,94)(46,95)(47,96)(48,97)(49,98)(50,99)(51,100)(52,101)(53,102)(54,103)(55,104)(56,105)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,126)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,113)(73,114)(74,115)(75,116)(76,117)(77,118)(78,119)(79,120)(80,121)(81,122)(82,123)(83,124)(84,125), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,23)(24,42)(25,41)(26,40)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)(43,72)(44,71)(45,70)(46,69)(47,68)(48,67)(49,66)(50,65)(51,64)(52,84)(53,83)(54,82)(55,81)(56,80)(57,79)(58,78)(59,77)(60,76)(61,75)(62,74)(63,73)(85,94)(86,93)(87,92)(88,91)(89,90)(95,105)(96,104)(97,103)(98,102)(99,101)(106,125)(107,124)(108,123)(109,122)(110,121)(111,120)(112,119)(113,118)(114,117)(115,116)(127,153)(128,152)(129,151)(130,150)(131,149)(132,148)(133,168)(134,167)(135,166)(136,165)(137,164)(138,163)(139,162)(140,161)(141,160)(142,159)(143,158)(144,157)(145,156)(146,155)(147,154)>;
G:=Group( (1,116,23,90)(2,117,24,91)(3,118,25,92)(4,119,26,93)(5,120,27,94)(6,121,28,95)(7,122,29,96)(8,123,30,97)(9,124,31,98)(10,125,32,99)(11,126,33,100)(12,106,34,101)(13,107,35,102)(14,108,36,103)(15,109,37,104)(16,110,38,105)(17,111,39,85)(18,112,40,86)(19,113,41,87)(20,114,42,88)(21,115,22,89)(43,151,77,134)(44,152,78,135)(45,153,79,136)(46,154,80,137)(47,155,81,138)(48,156,82,139)(49,157,83,140)(50,158,84,141)(51,159,64,142)(52,160,65,143)(53,161,66,144)(54,162,67,145)(55,163,68,146)(56,164,69,147)(57,165,70,127)(58,166,71,128)(59,167,72,129)(60,168,73,130)(61,148,74,131)(62,149,75,132)(63,150,76,133), (1,132)(2,133)(3,134)(4,135)(5,136)(6,137)(7,138)(8,139)(9,140)(10,141)(11,142)(12,143)(13,144)(14,145)(15,146)(16,147)(17,127)(18,128)(19,129)(20,130)(21,131)(22,148)(23,149)(24,150)(25,151)(26,152)(27,153)(28,154)(29,155)(30,156)(31,157)(32,158)(33,159)(34,160)(35,161)(36,162)(37,163)(38,164)(39,165)(40,166)(41,167)(42,168)(43,92)(44,93)(45,94)(46,95)(47,96)(48,97)(49,98)(50,99)(51,100)(52,101)(53,102)(54,103)(55,104)(56,105)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,126)(65,106)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,113)(73,114)(74,115)(75,116)(76,117)(77,118)(78,119)(79,120)(80,121)(81,122)(82,123)(83,124)(84,125), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,23)(24,42)(25,41)(26,40)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)(43,72)(44,71)(45,70)(46,69)(47,68)(48,67)(49,66)(50,65)(51,64)(52,84)(53,83)(54,82)(55,81)(56,80)(57,79)(58,78)(59,77)(60,76)(61,75)(62,74)(63,73)(85,94)(86,93)(87,92)(88,91)(89,90)(95,105)(96,104)(97,103)(98,102)(99,101)(106,125)(107,124)(108,123)(109,122)(110,121)(111,120)(112,119)(113,118)(114,117)(115,116)(127,153)(128,152)(129,151)(130,150)(131,149)(132,148)(133,168)(134,167)(135,166)(136,165)(137,164)(138,163)(139,162)(140,161)(141,160)(142,159)(143,158)(144,157)(145,156)(146,155)(147,154) );
G=PermutationGroup([[(1,116,23,90),(2,117,24,91),(3,118,25,92),(4,119,26,93),(5,120,27,94),(6,121,28,95),(7,122,29,96),(8,123,30,97),(9,124,31,98),(10,125,32,99),(11,126,33,100),(12,106,34,101),(13,107,35,102),(14,108,36,103),(15,109,37,104),(16,110,38,105),(17,111,39,85),(18,112,40,86),(19,113,41,87),(20,114,42,88),(21,115,22,89),(43,151,77,134),(44,152,78,135),(45,153,79,136),(46,154,80,137),(47,155,81,138),(48,156,82,139),(49,157,83,140),(50,158,84,141),(51,159,64,142),(52,160,65,143),(53,161,66,144),(54,162,67,145),(55,163,68,146),(56,164,69,147),(57,165,70,127),(58,166,71,128),(59,167,72,129),(60,168,73,130),(61,148,74,131),(62,149,75,132),(63,150,76,133)], [(1,132),(2,133),(3,134),(4,135),(5,136),(6,137),(7,138),(8,139),(9,140),(10,141),(11,142),(12,143),(13,144),(14,145),(15,146),(16,147),(17,127),(18,128),(19,129),(20,130),(21,131),(22,148),(23,149),(24,150),(25,151),(26,152),(27,153),(28,154),(29,155),(30,156),(31,157),(32,158),(33,159),(34,160),(35,161),(36,162),(37,163),(38,164),(39,165),(40,166),(41,167),(42,168),(43,92),(44,93),(45,94),(46,95),(47,96),(48,97),(49,98),(50,99),(51,100),(52,101),(53,102),(54,103),(55,104),(56,105),(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,126),(65,106),(66,107),(67,108),(68,109),(69,110),(70,111),(71,112),(72,113),(73,114),(74,115),(75,116),(76,117),(77,118),(78,119),(79,120),(80,121),(81,122),(82,123),(83,124),(84,125)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147),(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,21),(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(22,23),(24,42),(25,41),(26,40),(27,39),(28,38),(29,37),(30,36),(31,35),(32,34),(43,72),(44,71),(45,70),(46,69),(47,68),(48,67),(49,66),(50,65),(51,64),(52,84),(53,83),(54,82),(55,81),(56,80),(57,79),(58,78),(59,77),(60,76),(61,75),(62,74),(63,73),(85,94),(86,93),(87,92),(88,91),(89,90),(95,105),(96,104),(97,103),(98,102),(99,101),(106,125),(107,124),(108,123),(109,122),(110,121),(111,120),(112,119),(113,118),(114,117),(115,116),(127,153),(128,152),(129,151),(130,150),(131,149),(132,148),(133,168),(134,167),(135,166),(136,165),(137,164),(138,163),(139,162),(140,161),(141,160),(142,159),(143,158),(144,157),(145,156),(146,155),(147,154)]])
60 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 7A | 7B | 7C | 12 | 14A | 14B | 14C | 14D | ··· | 14I | 21A | ··· | 21F | 28A | 28B | 28C | 42A | ··· | 42F | 42G | ··· | 42R | 84A | ··· | 84F |
order | 1 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 7 | 7 | 7 | 12 | 14 | 14 | 14 | 14 | ··· | 14 | 21 | ··· | 21 | 28 | 28 | 28 | 42 | ··· | 42 | 42 | ··· | 42 | 84 | ··· | 84 |
size | 1 | 1 | 2 | 2 | 42 | 2 | 2 | 21 | 21 | 42 | 42 | 2 | 4 | 4 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | D7 | C4○D4 | D14 | D14 | D21 | D42 | D42 | D4⋊2S3 | D4⋊2D7 | D4⋊2D21 |
kernel | D4⋊2D21 | Dic42 | C4×D21 | C2×Dic21 | C21⋊7D4 | D4×C21 | C7×D4 | C28 | C2×C14 | C3×D4 | C21 | C12 | C2×C6 | D4 | C4 | C22 | C7 | C3 | C1 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 3 | 2 | 3 | 6 | 6 | 6 | 12 | 1 | 3 | 6 |
Matrix representation of D4⋊2D21 ►in GL4(𝔽337) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 148 | 0 |
0 | 0 | 0 | 189 |
336 | 0 | 0 | 0 |
0 | 336 | 0 | 0 |
0 | 0 | 0 | 189 |
0 | 0 | 148 | 0 |
278 | 273 | 0 | 0 |
112 | 230 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
230 | 30 | 0 | 0 |
225 | 107 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 336 |
G:=sub<GL(4,GF(337))| [1,0,0,0,0,1,0,0,0,0,148,0,0,0,0,189],[336,0,0,0,0,336,0,0,0,0,0,148,0,0,189,0],[278,112,0,0,273,230,0,0,0,0,1,0,0,0,0,1],[230,225,0,0,30,107,0,0,0,0,1,0,0,0,0,336] >;
D4⋊2D21 in GAP, Magma, Sage, TeX
D_4\rtimes_2D_{21}
% in TeX
G:=Group("D4:2D21");
// GroupNames label
G:=SmallGroup(336,199);
// by ID
G=gap.SmallGroup(336,199);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-7,55,218,116,964,10373]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^21=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations