Extensions 1→N→G→Q→1 with N=C6 and Q=S3×C32

Direct product G=N×Q with N=C6 and Q=S3×C32

Semidirect products G=N:Q with N=C6 and Q=S3×C32
extensionφ:Q→Aut NdρLabelID
C6⋊(S3×C32) = C3⋊S3×C3×C6φ: S3×C32/C33C2 ⊆ Aut C636C6:(S3xC3^2)324,173

Non-split extensions G=N.Q with N=C6 and Q=S3×C32
extensionφ:Q→Aut NdρLabelID
C6.1(S3×C32) = C32×Dic9φ: S3×C32/C33C2 ⊆ Aut C6108C6.1(S3xC3^2)324,90
C6.2(S3×C32) = C3×C32⋊C12φ: S3×C32/C33C2 ⊆ Aut C6366C6.2(S3xC3^2)324,92
C6.3(S3×C32) = C3×C9⋊C12φ: S3×C32/C33C2 ⊆ Aut C6366C6.3(S3xC3^2)324,94
C6.4(S3×C32) = D9×C3×C6φ: S3×C32/C33C2 ⊆ Aut C6108C6.4(S3xC3^2)324,136
C6.5(S3×C32) = C6×C32⋊C6φ: S3×C32/C33C2 ⊆ Aut C6366C6.5(S3xC3^2)324,138
C6.6(S3×C32) = C6×C9⋊C6φ: S3×C32/C33C2 ⊆ Aut C6366C6.6(S3xC3^2)324,140
C6.7(S3×C32) = C32×C3⋊Dic3φ: S3×C32/C33C2 ⊆ Aut C636C6.7(S3xC3^2)324,156
C6.8(S3×C32) = Dic3×C3×C9central extension (φ=1)108C6.8(S3xC3^2)324,91
C6.9(S3×C32) = Dic3×He3central extension (φ=1)366C6.9(S3xC3^2)324,93
C6.10(S3×C32) = Dic3×3- 1+2central extension (φ=1)366C6.10(S3xC3^2)324,95
C6.11(S3×C32) = S3×C3×C18central extension (φ=1)108C6.11(S3xC3^2)324,137
C6.12(S3×C32) = C2×S3×He3central extension (φ=1)366C6.12(S3xC3^2)324,139
C6.13(S3×C32) = C2×S3×3- 1+2central extension (φ=1)366C6.13(S3xC3^2)324,141
C6.14(S3×C32) = Dic3×C33central extension (φ=1)108C6.14(S3xC3^2)324,155