Copied to
clipboard

G = Dic3xHe3order 324 = 22·34

Direct product of Dic3 and He3

direct product, metabelian, supersoluble, monomial

Aliases: Dic3xHe3, C33:3C12, C3:(C4xHe3), C6.(C2xHe3), C2.(S3xHe3), (C3xHe3):4C4, (C6xHe3).2C2, C6.9(S3xC32), (C32xC6).5C6, (C32xDic3):C3, (C2xHe3).14S3, C32.7(C3xC12), C32:5(C3xDic3), C3.5(C32xDic3), (C3xDic3).2C32, (C3xC6).16(C3xC6), (C3xC6).22(C3xS3), SmallGroup(324,93)

Series: Derived Chief Lower central Upper central

C1C32 — Dic3xHe3
C1C3C32C3xC6C32xC6C6xHe3 — Dic3xHe3
C3C32 — Dic3xHe3
C1C6C2xHe3

Generators and relations for Dic3xHe3
 G = < a,b,c,d,e | a6=c3=d3=e3=1, b2=a3, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=cd-1, de=ed >

Subgroups: 284 in 100 conjugacy classes, 35 normal (15 characteristic)
C1, C2, C3, C3, C4, C6, C6, C32, C32, C32, Dic3, C12, C3xC6, C3xC6, C3xC6, He3, He3, C33, C3xDic3, C3xDic3, C3xC12, C2xHe3, C2xHe3, C32xC6, C3xHe3, C4xHe3, C32xDic3, C6xHe3, Dic3xHe3
Quotients: C1, C2, C3, C4, S3, C6, C32, Dic3, C12, C3xS3, C3xC6, He3, C3xDic3, C3xC12, C2xHe3, S3xC32, C4xHe3, C32xDic3, S3xHe3, Dic3xHe3

Smallest permutation representation of Dic3xHe3
On 36 points
Generators in S36
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(1 22 4 19)(2 21 5 24)(3 20 6 23)(7 26 10 29)(8 25 11 28)(9 30 12 27)(13 32 16 35)(14 31 17 34)(15 36 18 33)
(1 17 11)(2 18 12)(3 13 7)(4 14 8)(5 15 9)(6 16 10)(19 31 25)(20 32 26)(21 33 27)(22 34 28)(23 35 29)(24 36 30)
(1 3 5)(2 4 6)(7 9 11)(8 10 12)(13 15 17)(14 16 18)(19 23 21)(20 24 22)(25 29 27)(26 30 28)(31 35 33)(32 36 34)
(1 11 15)(2 12 16)(3 7 17)(4 8 18)(5 9 13)(6 10 14)(19 25 33)(20 26 34)(21 27 35)(22 28 36)(23 29 31)(24 30 32)

G:=sub<Sym(36)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,22,4,19)(2,21,5,24)(3,20,6,23)(7,26,10,29)(8,25,11,28)(9,30,12,27)(13,32,16,35)(14,31,17,34)(15,36,18,33), (1,17,11)(2,18,12)(3,13,7)(4,14,8)(5,15,9)(6,16,10)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,35,29)(24,36,30), (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,15,17)(14,16,18)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,35,33)(32,36,34), (1,11,15)(2,12,16)(3,7,17)(4,8,18)(5,9,13)(6,10,14)(19,25,33)(20,26,34)(21,27,35)(22,28,36)(23,29,31)(24,30,32)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,22,4,19)(2,21,5,24)(3,20,6,23)(7,26,10,29)(8,25,11,28)(9,30,12,27)(13,32,16,35)(14,31,17,34)(15,36,18,33), (1,17,11)(2,18,12)(3,13,7)(4,14,8)(5,15,9)(6,16,10)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,35,29)(24,36,30), (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,15,17)(14,16,18)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,35,33)(32,36,34), (1,11,15)(2,12,16)(3,7,17)(4,8,18)(5,9,13)(6,10,14)(19,25,33)(20,26,34)(21,27,35)(22,28,36)(23,29,31)(24,30,32) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(1,22,4,19),(2,21,5,24),(3,20,6,23),(7,26,10,29),(8,25,11,28),(9,30,12,27),(13,32,16,35),(14,31,17,34),(15,36,18,33)], [(1,17,11),(2,18,12),(3,13,7),(4,14,8),(5,15,9),(6,16,10),(19,31,25),(20,32,26),(21,33,27),(22,34,28),(23,35,29),(24,36,30)], [(1,3,5),(2,4,6),(7,9,11),(8,10,12),(13,15,17),(14,16,18),(19,23,21),(20,24,22),(25,29,27),(26,30,28),(31,35,33),(32,36,34)], [(1,11,15),(2,12,16),(3,7,17),(4,8,18),(5,9,13),(6,10,14),(19,25,33),(20,26,34),(21,27,35),(22,28,36),(23,29,31),(24,30,32)]])

66 conjugacy classes

class 1  2 3A3B3C3D3E3F···3M3N···3U4A4B6A6B6C6D6E6F···6M6N···6U12A12B12C12D12E···12T
order12333333···33···344666666···66···61212121212···12
size11112223···36···633112223···36···633339···9

66 irreducible representations

dim111111222233366
type+++-
imageC1C2C3C4C6C12S3Dic3C3xS3C3xDic3He3C2xHe3C4xHe3S3xHe3Dic3xHe3
kernelDic3xHe3C6xHe3C32xDic3C3xHe3C32xC6C33C2xHe3He3C3xC6C32Dic3C6C3C2C1
# reps1182816118822422

Matrix representation of Dic3xHe3 in GL5(F13)

11000
120000
00100
00010
00001
,
50000
88000
00100
00010
00001
,
10000
01000
00010
00001
00100
,
10000
01000
00900
00090
00009
,
90000
09000
00009
00100
00030

G:=sub<GL(5,GF(13))| [1,12,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[5,8,0,0,0,0,8,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9],[9,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,3,0,0,9,0,0] >;

Dic3xHe3 in GAP, Magma, Sage, TeX

{\rm Dic}_3\times {\rm He}_3
% in TeX

G:=Group("Dic3xHe3");
// GroupNames label

G:=SmallGroup(324,93);
// by ID

G=gap.SmallGroup(324,93);
# by ID

G:=PCGroup([6,-2,-3,-3,-2,-3,-3,108,386,7781]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=c^3=d^3=e^3=1,b^2=a^3,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c*d^-1,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<