Extensions 1→N→G→Q→1 with N=C28 and Q=Dic3

Direct product G=N×Q with N=C28 and Q=Dic3

Semidirect products G=N:Q with N=C28 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C281Dic3 = C84⋊C4φ: Dic3/C6C2 ⊆ Aut C28336C28:1Dic3336,99
C282Dic3 = C4×Dic21φ: Dic3/C6C2 ⊆ Aut C28336C28:2Dic3336,97
C283Dic3 = C7×C4⋊Dic3φ: Dic3/C6C2 ⊆ Aut C28336C28:3Dic3336,83

Non-split extensions G=N.Q with N=C28 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C28.1Dic3 = C84.C4φ: Dic3/C6C2 ⊆ Aut C281682C28.1Dic3336,96
C28.2Dic3 = C21⋊C16φ: Dic3/C6C2 ⊆ Aut C283362C28.2Dic3336,5
C28.3Dic3 = C2×C21⋊C8φ: Dic3/C6C2 ⊆ Aut C28336C28.3Dic3336,95
C28.4Dic3 = C7×C4.Dic3φ: Dic3/C6C2 ⊆ Aut C281682C28.4Dic3336,80
C28.5Dic3 = C7×C3⋊C16central extension (φ=1)3362C28.5Dic3336,3
C28.6Dic3 = C14×C3⋊C8central extension (φ=1)336C28.6Dic3336,79