extension | φ:Q→Aut N | d | ρ | Label | ID |
(C6×C18)⋊1C3 = C62.13C32 | φ: C3/C1 → C3 ⊆ Aut C6×C18 | 54 | 3 | (C6xC18):1C3 | 324,49 |
(C6×C18)⋊2C3 = C62.14C32 | φ: C3/C1 → C3 ⊆ Aut C6×C18 | 54 | 3 | (C6xC18):2C3 | 324,50 |
(C6×C18)⋊3C3 = C62.16C32 | φ: C3/C1 → C3 ⊆ Aut C6×C18 | 108 | | (C6xC18):3C3 | 324,52 |
(C6×C18)⋊4C3 = C22×C32⋊C9 | φ: C3/C1 → C3 ⊆ Aut C6×C18 | 108 | | (C6xC18):4C3 | 324,82 |
(C6×C18)⋊5C3 = C22×He3.C3 | φ: C3/C1 → C3 ⊆ Aut C6×C18 | 108 | | (C6xC18):5C3 | 324,87 |
(C6×C18)⋊6C3 = C22×He3⋊C3 | φ: C3/C1 → C3 ⊆ Aut C6×C18 | 108 | | (C6xC18):6C3 | 324,88 |
(C6×C18)⋊7C3 = A4×C3×C9 | φ: C3/C1 → C3 ⊆ Aut C6×C18 | 108 | | (C6xC18):7C3 | 324,126 |
(C6×C18)⋊8C3 = C3×C9⋊A4 | φ: C3/C1 → C3 ⊆ Aut C6×C18 | 108 | | (C6xC18):8C3 | 324,127 |
(C6×C18)⋊9C3 = C62.25C32 | φ: C3/C1 → C3 ⊆ Aut C6×C18 | 54 | 3 | (C6xC18):9C3 | 324,128 |
(C6×C18)⋊10C3 = C2×C6×3- 1+2 | φ: C3/C1 → C3 ⊆ Aut C6×C18 | 108 | | (C6xC18):10C3 | 324,153 |
(C6×C18)⋊11C3 = C22×C9○He3 | φ: C3/C1 → C3 ⊆ Aut C6×C18 | 108 | | (C6xC18):11C3 | 324,154 |