direct product, abelian, monomial
Aliases: C6×C18, SmallGroup(108,29)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C6×C18 |
C1 — C6×C18 |
C1 — C6×C18 |
Generators and relations for C6×C18
G = < a,b | a6=b18=1, ab=ba >
(1 45 56 108 89 31)(2 46 57 91 90 32)(3 47 58 92 73 33)(4 48 59 93 74 34)(5 49 60 94 75 35)(6 50 61 95 76 36)(7 51 62 96 77 19)(8 52 63 97 78 20)(9 53 64 98 79 21)(10 54 65 99 80 22)(11 37 66 100 81 23)(12 38 67 101 82 24)(13 39 68 102 83 25)(14 40 69 103 84 26)(15 41 70 104 85 27)(16 42 71 105 86 28)(17 43 72 106 87 29)(18 44 55 107 88 30)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)
G:=sub<Sym(108)| (1,45,56,108,89,31)(2,46,57,91,90,32)(3,47,58,92,73,33)(4,48,59,93,74,34)(5,49,60,94,75,35)(6,50,61,95,76,36)(7,51,62,96,77,19)(8,52,63,97,78,20)(9,53,64,98,79,21)(10,54,65,99,80,22)(11,37,66,100,81,23)(12,38,67,101,82,24)(13,39,68,102,83,25)(14,40,69,103,84,26)(15,41,70,104,85,27)(16,42,71,105,86,28)(17,43,72,106,87,29)(18,44,55,107,88,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)>;
G:=Group( (1,45,56,108,89,31)(2,46,57,91,90,32)(3,47,58,92,73,33)(4,48,59,93,74,34)(5,49,60,94,75,35)(6,50,61,95,76,36)(7,51,62,96,77,19)(8,52,63,97,78,20)(9,53,64,98,79,21)(10,54,65,99,80,22)(11,37,66,100,81,23)(12,38,67,101,82,24)(13,39,68,102,83,25)(14,40,69,103,84,26)(15,41,70,104,85,27)(16,42,71,105,86,28)(17,43,72,106,87,29)(18,44,55,107,88,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108) );
G=PermutationGroup([[(1,45,56,108,89,31),(2,46,57,91,90,32),(3,47,58,92,73,33),(4,48,59,93,74,34),(5,49,60,94,75,35),(6,50,61,95,76,36),(7,51,62,96,77,19),(8,52,63,97,78,20),(9,53,64,98,79,21),(10,54,65,99,80,22),(11,37,66,100,81,23),(12,38,67,101,82,24),(13,39,68,102,83,25),(14,40,69,103,84,26),(15,41,70,104,85,27),(16,42,71,105,86,28),(17,43,72,106,87,29),(18,44,55,107,88,30)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)]])
C6×C18 is a maximal subgroup of
C6.D18 C62.C9 C62.11C32 C62.12C32 C62.13C32 C62.14C32 C62.15C32 C62.16C32 C62.25C32
108 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | ··· | 3H | 6A | ··· | 6X | 9A | ··· | 9R | 18A | ··· | 18BB |
order | 1 | 2 | 2 | 2 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
108 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | ||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | C9 | C18 |
kernel | C6×C18 | C3×C18 | C2×C18 | C62 | C18 | C3×C6 | C2×C6 | C6 |
# reps | 1 | 3 | 6 | 2 | 18 | 6 | 18 | 54 |
Matrix representation of C6×C18 ►in GL3(𝔽19) generated by
18 | 0 | 0 |
0 | 11 | 0 |
0 | 0 | 1 |
14 | 0 | 0 |
0 | 5 | 0 |
0 | 0 | 3 |
G:=sub<GL(3,GF(19))| [18,0,0,0,11,0,0,0,1],[14,0,0,0,5,0,0,0,3] >;
C6×C18 in GAP, Magma, Sage, TeX
C_6\times C_{18}
% in TeX
G:=Group("C6xC18");
// GroupNames label
G:=SmallGroup(108,29);
// by ID
G=gap.SmallGroup(108,29);
# by ID
G:=PCGroup([5,-2,-2,-3,-3,-3,147]);
// Polycyclic
G:=Group<a,b|a^6=b^18=1,a*b=b*a>;
// generators/relations
Export