# Extensions 1→N→G→Q→1 with N=C22×3- 1+2 and Q=C3

Direct product G=N×Q with N=C22×3- 1+2 and Q=C3
dρLabelID
C2×C6×3- 1+2108C2xC6xES-(3,1)324,153

Semidirect products G=N:Q with N=C22×3- 1+2 and Q=C3
extensionφ:Q→Out NdρLabelID
(C22×3- 1+2)⋊1C3 = 3- 1+2⋊A4φ: C3/C1C3 ⊆ Out C22×3- 1+2549(C2^2xES-(3,1)):1C3324,57
(C22×3- 1+2)⋊2C3 = C62.6C32φ: C3/C1C3 ⊆ Out C22×3- 1+2369(C2^2xES-(3,1)):2C3324,58
(C22×3- 1+2)⋊3C3 = C22×C3≀C3φ: C3/C1C3 ⊆ Out C22×3- 1+236(C2^2xES-(3,1)):3C3324,86
(C22×3- 1+2)⋊4C3 = C22×He3.C3φ: C3/C1C3 ⊆ Out C22×3- 1+2108(C2^2xES-(3,1)):4C3324,87
(C22×3- 1+2)⋊5C3 = A4×3- 1+2φ: C3/C1C3 ⊆ Out C22×3- 1+2369(C2^2xES-(3,1)):5C3324,131
(C22×3- 1+2)⋊6C3 = C62.9C32φ: C3/C1C3 ⊆ Out C22×3- 1+2549(C2^2xES-(3,1)):6C3324,132
(C22×3- 1+2)⋊7C3 = C22×C9○He3φ: trivial image108(C2^2xES-(3,1)):7C3324,154

Non-split extensions G=N.Q with N=C22×3- 1+2 and Q=C3
extensionφ:Q→Out NdρLabelID
(C22×3- 1+2).1C3 = C62.C32φ: C3/C1C3 ⊆ Out C22×3- 1+2549(C2^2xES-(3,1)).1C3324,56
(C22×3- 1+2).2C3 = C22×C3.He3φ: C3/C1C3 ⊆ Out C22×3- 1+2108(C2^2xES-(3,1)).2C3324,89

׿
×
𝔽