Copied to
clipboard

G = 3- 1+2⋊A4order 324 = 22·34

1st semidirect product of 3- 1+2 and A4 acting via A4/C22=C3

metabelian, soluble, monomial

Aliases: C62.5C32, 3- 1+21A4, (C2×C6).9He3, C32.A44C3, C32⋊A4.2C3, C32.5(C3×A4), C3.10(C32⋊A4), C223(He3.C3), (C22×3- 1+2)⋊1C3, (C3×C3.A4)⋊4C3, SmallGroup(324,57)

Series: Derived Chief Lower central Upper central

C1C62 — 3- 1+2⋊A4
C1C22C2×C6C62C32⋊A4 — 3- 1+2⋊A4
C22C2×C6C62 — 3- 1+2⋊A4
C1C3C323- 1+2

Generators and relations for 3- 1+2⋊A4
 G = < a,b,c,d,e | a9=b3=c2=d2=e3=1, bab-1=a4, ac=ca, ad=da, eae-1=ab-1, bc=cb, bd=db, ebe-1=a3b, ece-1=cd=dc, ede-1=c >

3C2
3C3
36C3
3C6
9C6
3C9
12C32
12C9
12C9
3C2×C6
9A4
3C18
3C18
3C18
3C3×C6
4He3
4C3×C9
43- 1+2
3C3.A4
3C3×A4
3C2×C18
3C3.A4
3C2×3- 1+2
4He3.C3

Character table of 3- 1+2⋊A4

 class 123A3B3C3D3E3F6A6B6C6D9A9B9C9D9E9F9G9H9I9J18A18B18C18D18E18F
 size 13113336363399991212121212123636999999
ρ11111111111111111111111111111    trivial
ρ2111111111111ζ3ζ32ζ3ζ32ζ32ζ32ζ3ζ3ζ32ζ3ζ3ζ32ζ3ζ32ζ3ζ32    linear of order 3
ρ3111111111111ζ32ζ3ζ32ζ3ζ3ζ3ζ32ζ32ζ3ζ32ζ32ζ3ζ32ζ3ζ32ζ3    linear of order 3
ρ4111111ζ3ζ321111ζ3ζ32ζ32ζ3ζ3ζ3ζ32ζ3211ζ3ζ32ζ3ζ32ζ3ζ32    linear of order 3
ρ5111111ζ3ζ321111ζ32ζ3111111ζ32ζ3ζ32ζ3ζ32ζ3ζ32ζ3    linear of order 3
ρ6111111ζ32ζ31111ζ32ζ3ζ3ζ32ζ32ζ32ζ3ζ311ζ32ζ3ζ32ζ3ζ32ζ3    linear of order 3
ρ7111111ζ32ζ3111111ζ32ζ3ζ3ζ3ζ32ζ32ζ32ζ3111111    linear of order 3
ρ8111111ζ32ζ31111ζ3ζ32111111ζ3ζ32ζ3ζ32ζ3ζ32ζ3ζ32    linear of order 3
ρ9111111ζ3ζ32111111ζ3ζ32ζ32ζ32ζ3ζ3ζ3ζ32111111    linear of order 3
ρ103-1333300-1-1-1-13300000000-1-1-1-1-1-1    orthogonal lifted from A4
ρ113-133-3-3-3/2-3+3-3/200-1-1ζ65ζ600000000002-1+-3-1--32-1+-3-1--3    complex lifted from C32⋊A4
ρ123-1333300-1-1-1-1-3+3-3/2-3-3-3/200000000ζ65ζ6ζ65ζ6ζ65ζ6    complex lifted from C3×A4
ρ133-133-3-3-3/2-3+3-3/200-1-1ζ65ζ60000000000-1--3-1--3-1+-3-1+-322    complex lifted from C32⋊A4
ρ143-1333300-1-1-1-1-3-3-3/2-3+3-3/200000000ζ6ζ65ζ6ζ65ζ6ζ65    complex lifted from C3×A4
ρ153-133-3+3-3/2-3-3-3/200-1-1ζ6ζ6500000000002-1--3-1+-32-1--3-1+-3    complex lifted from C32⋊A4
ρ163333-3-3-3/2-3+3-3/20033-3+3-3/2-3-3-3/20000000000000000    complex lifted from He3
ρ173-133-3+3-3/2-3-3-3/200-1-1ζ6ζ650000000000-1--322-1+-3-1+-3-1--3    complex lifted from C32⋊A4
ρ183-133-3+3-3/2-3-3-3/200-1-1ζ6ζ650000000000-1+-3-1+-3-1--3-1--322    complex lifted from C32⋊A4
ρ193333-3+3-3/2-3-3-3/20033-3-3-3/2-3+3-3/20000000000000000    complex lifted from He3
ρ203-133-3-3-3/2-3+3-3/200-1-1ζ65ζ60000000000-1+-322-1--3-1--3-1+-3    complex lifted from C32⋊A4
ρ2133-3-3-3/2-3+3-3/20000-3-3-3/2-3+3-3/20000979ζ98+2ζ9295929895ζ94+2ζ9ζ97+2ζ9400000000    complex lifted from He3.C3
ρ2233-3-3-3/2-3+3-3/20000-3-3-3/2-3+3-3/20000ζ94+2ζ99895ζ98+2ζ929592ζ97+2ζ9497900000000    complex lifted from He3.C3
ρ2333-3+3-3/2-3-3-3/20000-3+3-3/2-3-3-3/200009592ζ97+2ζ94ζ94+2ζ9979ζ98+2ζ92989500000000    complex lifted from He3.C3
ρ2433-3-3-3/2-3+3-3/20000-3-3-3/2-3+3-3/20000ζ97+2ζ9495929895ζ98+2ζ92979ζ94+2ζ900000000    complex lifted from He3.C3
ρ2533-3+3-3/2-3-3-3/20000-3+3-3/2-3-3-3/200009895ζ94+2ζ9979ζ97+2ζ949592ζ98+2ζ9200000000    complex lifted from He3.C3
ρ2633-3+3-3/2-3-3-3/20000-3+3-3/2-3-3-3/20000ζ98+2ζ92979ζ97+2ζ94ζ94+2ζ99895959200000000    complex lifted from He3.C3
ρ279-3-9-9-3/2-9+9-3/200003+3-3/23-3-3/2000000000000000000    complex faithful
ρ289-3-9+9-3/2-9-9-3/200003-3-3/23+3-3/2000000000000000000    complex faithful

Smallest permutation representation of 3- 1+2⋊A4
On 54 points
Generators in S54
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(2 8 5)(3 6 9)(11 17 14)(12 15 18)(20 26 23)(21 24 27)(28 34 31)(29 32 35)(37 43 40)(38 41 44)(46 49 52)(48 54 51)
(10 47)(11 48)(12 49)(13 50)(14 51)(15 52)(16 53)(17 54)(18 46)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 37)(35 38)(36 39)
(1 25)(2 26)(3 27)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 37)(35 38)(36 39)
(1 49 34)(2 47 32)(3 51 33)(4 52 28)(5 50 35)(6 54 36)(7 46 31)(8 53 29)(9 48 30)(10 44 26)(11 42 24)(12 37 25)(13 38 20)(14 45 27)(15 40 19)(16 41 23)(17 39 21)(18 43 22)

G:=sub<Sym(54)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (2,8,5)(3,6,9)(11,17,14)(12,15,18)(20,26,23)(21,24,27)(28,34,31)(29,32,35)(37,43,40)(38,41,44)(46,49,52)(48,54,51), (10,47)(11,48)(12,49)(13,50)(14,51)(15,52)(16,53)(17,54)(18,46)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,37)(35,38)(36,39), (1,25)(2,26)(3,27)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,37)(35,38)(36,39), (1,49,34)(2,47,32)(3,51,33)(4,52,28)(5,50,35)(6,54,36)(7,46,31)(8,53,29)(9,48,30)(10,44,26)(11,42,24)(12,37,25)(13,38,20)(14,45,27)(15,40,19)(16,41,23)(17,39,21)(18,43,22)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (2,8,5)(3,6,9)(11,17,14)(12,15,18)(20,26,23)(21,24,27)(28,34,31)(29,32,35)(37,43,40)(38,41,44)(46,49,52)(48,54,51), (10,47)(11,48)(12,49)(13,50)(14,51)(15,52)(16,53)(17,54)(18,46)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,37)(35,38)(36,39), (1,25)(2,26)(3,27)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,37)(35,38)(36,39), (1,49,34)(2,47,32)(3,51,33)(4,52,28)(5,50,35)(6,54,36)(7,46,31)(8,53,29)(9,48,30)(10,44,26)(11,42,24)(12,37,25)(13,38,20)(14,45,27)(15,40,19)(16,41,23)(17,39,21)(18,43,22) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(2,8,5),(3,6,9),(11,17,14),(12,15,18),(20,26,23),(21,24,27),(28,34,31),(29,32,35),(37,43,40),(38,41,44),(46,49,52),(48,54,51)], [(10,47),(11,48),(12,49),(13,50),(14,51),(15,52),(16,53),(17,54),(18,46),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,37),(35,38),(36,39)], [(1,25),(2,26),(3,27),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,37),(35,38),(36,39)], [(1,49,34),(2,47,32),(3,51,33),(4,52,28),(5,50,35),(6,54,36),(7,46,31),(8,53,29),(9,48,30),(10,44,26),(11,42,24),(12,37,25),(13,38,20),(14,45,27),(15,40,19),(16,41,23),(17,39,21),(18,43,22)]])

Matrix representation of 3- 1+2⋊A4 in GL6(𝔽19)

010000
8184000
18121000
000700
000070
000007
,
100000
070000
11811000
000100
000010
000001
,
100000
010000
001000
000100
00011180
0007018
,
100000
010000
001000
0001800
0000180
0001201
,
1437000
500000
1605000
00011170
000081
0000120

G:=sub<GL(6,GF(19))| [0,8,18,0,0,0,1,18,12,0,0,0,0,4,1,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[1,0,1,0,0,0,0,7,18,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,11,7,0,0,0,0,18,0,0,0,0,0,0,18],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,12,0,0,0,0,18,0,0,0,0,0,0,1],[14,5,16,0,0,0,3,0,0,0,0,0,7,0,5,0,0,0,0,0,0,11,0,0,0,0,0,17,8,12,0,0,0,0,1,0] >;

3- 1+2⋊A4 in GAP, Magma, Sage, TeX

3_-^{1+2}\rtimes A_4
% in TeX

G:=Group("ES-(3,1):A4");
// GroupNames label

G:=SmallGroup(324,57);
// by ID

G=gap.SmallGroup(324,57);
# by ID

G:=PCGroup([6,-3,-3,-3,-3,-2,2,145,115,1136,224,4864,8753]);
// Polycyclic

G:=Group<a,b,c,d,e|a^9=b^3=c^2=d^2=e^3=1,b*a*b^-1=a^4,a*c=c*a,a*d=d*a,e*a*e^-1=a*b^-1,b*c=c*b,b*d=d*b,e*b*e^-1=a^3*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of 3- 1+2⋊A4 in TeX
Character table of 3- 1+2⋊A4 in TeX

׿
×
𝔽