Extensions 1→N→G→Q→1 with N=C7×C3⋊D4 and Q=C2

Direct product G=N×Q with N=C7×C3⋊D4 and Q=C2
dρLabelID
C14×C3⋊D4168C14xC3:D4336,193

Semidirect products G=N:Q with N=C7×C3⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×C3⋊D4)⋊1C2 = C42.C23φ: C2/C1C2 ⊆ Out C7×C3⋊D41684-(C7xC3:D4):1C2336,153
(C7×C3⋊D4)⋊2C2 = Dic3.D14φ: C2/C1C2 ⊆ Out C7×C3⋊D41684(C7xC3:D4):2C2336,155
(C7×C3⋊D4)⋊3C2 = D7×C3⋊D4φ: C2/C1C2 ⊆ Out C7×C3⋊D4844(C7xC3:D4):3C2336,161
(C7×C3⋊D4)⋊4C2 = D6⋊D14φ: C2/C1C2 ⊆ Out C7×C3⋊D4844+(C7xC3:D4):4C2336,163
(C7×C3⋊D4)⋊5C2 = S3×C7×D4φ: C2/C1C2 ⊆ Out C7×C3⋊D4844(C7xC3:D4):5C2336,188
(C7×C3⋊D4)⋊6C2 = C7×D42S3φ: C2/C1C2 ⊆ Out C7×C3⋊D41684(C7xC3:D4):6C2336,189
(C7×C3⋊D4)⋊7C2 = C7×C4○D12φ: trivial image1682(C7xC3:D4):7C2336,187


׿
×
𝔽