Copied to
clipboard

G = C7×D42S3order 336 = 24·3·7

Direct product of C7 and D42S3

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C7×D42S3, C28.40D6, Dic63C14, C84.47C22, C42.53C23, (C7×D4)⋊5S3, D42(S3×C7), (S3×C28)⋊7C2, (C4×S3)⋊2C14, (D4×C21)⋊9C2, (C3×D4)⋊3C14, C3⋊D42C14, C4.5(S3×C14), (C2×C14).4D6, C2116(C4○D4), C12.5(C2×C14), (C7×Dic6)⋊9C2, D6.2(C2×C14), (Dic3×C14)⋊9C2, (C2×Dic3)⋊3C14, C22.1(S3×C14), C6.6(C22×C14), (C2×C42).20C22, C14.43(C22×S3), Dic3.3(C2×C14), (S3×C14).13C22, (C7×Dic3).16C22, C32(C7×C4○D4), (C2×C6).(C2×C14), C2.7(S3×C2×C14), (C7×C3⋊D4)⋊6C2, SmallGroup(336,189)

Series: Derived Chief Lower central Upper central

C1C6 — C7×D42S3
C1C3C6C42S3×C14S3×C28 — C7×D42S3
C3C6 — C7×D42S3
C1C14C7×D4

Generators and relations for C7×D42S3
 G = < a,b,c,d,e | a7=b4=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b2c, ede=d-1 >

Subgroups: 144 in 80 conjugacy classes, 46 normal (26 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C7, C2×C4, D4, D4, Q8, Dic3, Dic3, C12, D6, C2×C6, C14, C14, C4○D4, C21, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3×D4, C28, C28, C2×C14, C2×C14, S3×C7, C42, C42, D42S3, C2×C28, C7×D4, C7×D4, C7×Q8, C7×Dic3, C7×Dic3, C84, S3×C14, C2×C42, C7×C4○D4, C7×Dic6, S3×C28, Dic3×C14, C7×C3⋊D4, D4×C21, C7×D42S3
Quotients: C1, C2, C22, S3, C7, C23, D6, C14, C4○D4, C22×S3, C2×C14, S3×C7, D42S3, C22×C14, S3×C14, C7×C4○D4, S3×C2×C14, C7×D42S3

Smallest permutation representation of C7×D42S3
On 168 points
Generators in S168
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)(127 128 129 130 131 132 133)(134 135 136 137 138 139 140)(141 142 143 144 145 146 147)(148 149 150 151 152 153 154)(155 156 157 158 159 160 161)(162 163 164 165 166 167 168)
(1 141 57 120)(2 142 58 121)(3 143 59 122)(4 144 60 123)(5 145 61 124)(6 146 62 125)(7 147 63 126)(8 85 29 106)(9 86 30 107)(10 87 31 108)(11 88 32 109)(12 89 33 110)(13 90 34 111)(14 91 35 112)(15 92 36 113)(16 93 37 114)(17 94 38 115)(18 95 39 116)(19 96 40 117)(20 97 41 118)(21 98 42 119)(22 99 162 78)(23 100 163 79)(24 101 164 80)(25 102 165 81)(26 103 166 82)(27 104 167 83)(28 105 168 84)(43 148 64 127)(44 149 65 128)(45 150 66 129)(46 151 67 130)(47 152 68 131)(48 153 69 132)(49 154 70 133)(50 155 71 134)(51 156 72 135)(52 157 73 136)(53 158 74 137)(54 159 75 138)(55 160 76 139)(56 161 77 140)
(1 162)(2 163)(3 164)(4 165)(5 166)(6 167)(7 168)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 49)(15 50)(16 51)(17 52)(18 53)(19 54)(20 55)(21 56)(22 57)(23 58)(24 59)(25 60)(26 61)(27 62)(28 63)(29 64)(30 65)(31 66)(32 67)(33 68)(34 69)(35 70)(36 71)(37 72)(38 73)(39 74)(40 75)(41 76)(42 77)(78 120)(79 121)(80 122)(81 123)(82 124)(83 125)(84 126)(85 127)(86 128)(87 129)(88 130)(89 131)(90 132)(91 133)(92 134)(93 135)(94 136)(95 137)(96 138)(97 139)(98 140)(99 141)(100 142)(101 143)(102 144)(103 145)(104 146)(105 147)(106 148)(107 149)(108 150)(109 151)(110 152)(111 153)(112 154)(113 155)(114 156)(115 157)(116 158)(117 159)(118 160)(119 161)
(1 50 43)(2 51 44)(3 52 45)(4 53 46)(5 54 47)(6 55 48)(7 56 49)(8 162 15)(9 163 16)(10 164 17)(11 165 18)(12 166 19)(13 167 20)(14 168 21)(22 36 29)(23 37 30)(24 38 31)(25 39 32)(26 40 33)(27 41 34)(28 42 35)(57 71 64)(58 72 65)(59 73 66)(60 74 67)(61 75 68)(62 76 69)(63 77 70)(78 92 85)(79 93 86)(80 94 87)(81 95 88)(82 96 89)(83 97 90)(84 98 91)(99 113 106)(100 114 107)(101 115 108)(102 116 109)(103 117 110)(104 118 111)(105 119 112)(120 134 127)(121 135 128)(122 136 129)(123 137 130)(124 138 131)(125 139 132)(126 140 133)(141 155 148)(142 156 149)(143 157 150)(144 158 151)(145 159 152)(146 160 153)(147 161 154)
(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 29)(16 30)(17 31)(18 32)(19 33)(20 34)(21 35)(22 162)(23 163)(24 164)(25 165)(26 166)(27 167)(28 168)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)(64 71)(65 72)(66 73)(67 74)(68 75)(69 76)(70 77)(78 99)(79 100)(80 101)(81 102)(82 103)(83 104)(84 105)(85 113)(86 114)(87 115)(88 116)(89 117)(90 118)(91 119)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)(127 134)(128 135)(129 136)(130 137)(131 138)(132 139)(133 140)(148 155)(149 156)(150 157)(151 158)(152 159)(153 160)(154 161)

G:=sub<Sym(168)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168), (1,141,57,120)(2,142,58,121)(3,143,59,122)(4,144,60,123)(5,145,61,124)(6,146,62,125)(7,147,63,126)(8,85,29,106)(9,86,30,107)(10,87,31,108)(11,88,32,109)(12,89,33,110)(13,90,34,111)(14,91,35,112)(15,92,36,113)(16,93,37,114)(17,94,38,115)(18,95,39,116)(19,96,40,117)(20,97,41,118)(21,98,42,119)(22,99,162,78)(23,100,163,79)(24,101,164,80)(25,102,165,81)(26,103,166,82)(27,104,167,83)(28,105,168,84)(43,148,64,127)(44,149,65,128)(45,150,66,129)(46,151,67,130)(47,152,68,131)(48,153,69,132)(49,154,70,133)(50,155,71,134)(51,156,72,135)(52,157,73,136)(53,158,74,137)(54,159,75,138)(55,160,76,139)(56,161,77,140), (1,162)(2,163)(3,164)(4,165)(5,166)(6,167)(7,168)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70)(36,71)(37,72)(38,73)(39,74)(40,75)(41,76)(42,77)(78,120)(79,121)(80,122)(81,123)(82,124)(83,125)(84,126)(85,127)(86,128)(87,129)(88,130)(89,131)(90,132)(91,133)(92,134)(93,135)(94,136)(95,137)(96,138)(97,139)(98,140)(99,141)(100,142)(101,143)(102,144)(103,145)(104,146)(105,147)(106,148)(107,149)(108,150)(109,151)(110,152)(111,153)(112,154)(113,155)(114,156)(115,157)(116,158)(117,159)(118,160)(119,161), (1,50,43)(2,51,44)(3,52,45)(4,53,46)(5,54,47)(6,55,48)(7,56,49)(8,162,15)(9,163,16)(10,164,17)(11,165,18)(12,166,19)(13,167,20)(14,168,21)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(57,71,64)(58,72,65)(59,73,66)(60,74,67)(61,75,68)(62,76,69)(63,77,70)(78,92,85)(79,93,86)(80,94,87)(81,95,88)(82,96,89)(83,97,90)(84,98,91)(99,113,106)(100,114,107)(101,115,108)(102,116,109)(103,117,110)(104,118,111)(105,119,112)(120,134,127)(121,135,128)(122,136,129)(123,137,130)(124,138,131)(125,139,132)(126,140,133)(141,155,148)(142,156,149)(143,157,150)(144,158,151)(145,159,152)(146,160,153)(147,161,154), (8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(22,162)(23,163)(24,164)(25,165)(26,166)(27,167)(28,168)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56)(64,71)(65,72)(66,73)(67,74)(68,75)(69,76)(70,77)(78,99)(79,100)(80,101)(81,102)(82,103)(83,104)(84,105)(85,113)(86,114)(87,115)(88,116)(89,117)(90,118)(91,119)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(127,134)(128,135)(129,136)(130,137)(131,138)(132,139)(133,140)(148,155)(149,156)(150,157)(151,158)(152,159)(153,160)(154,161)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168), (1,141,57,120)(2,142,58,121)(3,143,59,122)(4,144,60,123)(5,145,61,124)(6,146,62,125)(7,147,63,126)(8,85,29,106)(9,86,30,107)(10,87,31,108)(11,88,32,109)(12,89,33,110)(13,90,34,111)(14,91,35,112)(15,92,36,113)(16,93,37,114)(17,94,38,115)(18,95,39,116)(19,96,40,117)(20,97,41,118)(21,98,42,119)(22,99,162,78)(23,100,163,79)(24,101,164,80)(25,102,165,81)(26,103,166,82)(27,104,167,83)(28,105,168,84)(43,148,64,127)(44,149,65,128)(45,150,66,129)(46,151,67,130)(47,152,68,131)(48,153,69,132)(49,154,70,133)(50,155,71,134)(51,156,72,135)(52,157,73,136)(53,158,74,137)(54,159,75,138)(55,160,76,139)(56,161,77,140), (1,162)(2,163)(3,164)(4,165)(5,166)(6,167)(7,168)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70)(36,71)(37,72)(38,73)(39,74)(40,75)(41,76)(42,77)(78,120)(79,121)(80,122)(81,123)(82,124)(83,125)(84,126)(85,127)(86,128)(87,129)(88,130)(89,131)(90,132)(91,133)(92,134)(93,135)(94,136)(95,137)(96,138)(97,139)(98,140)(99,141)(100,142)(101,143)(102,144)(103,145)(104,146)(105,147)(106,148)(107,149)(108,150)(109,151)(110,152)(111,153)(112,154)(113,155)(114,156)(115,157)(116,158)(117,159)(118,160)(119,161), (1,50,43)(2,51,44)(3,52,45)(4,53,46)(5,54,47)(6,55,48)(7,56,49)(8,162,15)(9,163,16)(10,164,17)(11,165,18)(12,166,19)(13,167,20)(14,168,21)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(57,71,64)(58,72,65)(59,73,66)(60,74,67)(61,75,68)(62,76,69)(63,77,70)(78,92,85)(79,93,86)(80,94,87)(81,95,88)(82,96,89)(83,97,90)(84,98,91)(99,113,106)(100,114,107)(101,115,108)(102,116,109)(103,117,110)(104,118,111)(105,119,112)(120,134,127)(121,135,128)(122,136,129)(123,137,130)(124,138,131)(125,139,132)(126,140,133)(141,155,148)(142,156,149)(143,157,150)(144,158,151)(145,159,152)(146,160,153)(147,161,154), (8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(22,162)(23,163)(24,164)(25,165)(26,166)(27,167)(28,168)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56)(64,71)(65,72)(66,73)(67,74)(68,75)(69,76)(70,77)(78,99)(79,100)(80,101)(81,102)(82,103)(83,104)(84,105)(85,113)(86,114)(87,115)(88,116)(89,117)(90,118)(91,119)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(127,134)(128,135)(129,136)(130,137)(131,138)(132,139)(133,140)(148,155)(149,156)(150,157)(151,158)(152,159)(153,160)(154,161) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126),(127,128,129,130,131,132,133),(134,135,136,137,138,139,140),(141,142,143,144,145,146,147),(148,149,150,151,152,153,154),(155,156,157,158,159,160,161),(162,163,164,165,166,167,168)], [(1,141,57,120),(2,142,58,121),(3,143,59,122),(4,144,60,123),(5,145,61,124),(6,146,62,125),(7,147,63,126),(8,85,29,106),(9,86,30,107),(10,87,31,108),(11,88,32,109),(12,89,33,110),(13,90,34,111),(14,91,35,112),(15,92,36,113),(16,93,37,114),(17,94,38,115),(18,95,39,116),(19,96,40,117),(20,97,41,118),(21,98,42,119),(22,99,162,78),(23,100,163,79),(24,101,164,80),(25,102,165,81),(26,103,166,82),(27,104,167,83),(28,105,168,84),(43,148,64,127),(44,149,65,128),(45,150,66,129),(46,151,67,130),(47,152,68,131),(48,153,69,132),(49,154,70,133),(50,155,71,134),(51,156,72,135),(52,157,73,136),(53,158,74,137),(54,159,75,138),(55,160,76,139),(56,161,77,140)], [(1,162),(2,163),(3,164),(4,165),(5,166),(6,167),(7,168),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,49),(15,50),(16,51),(17,52),(18,53),(19,54),(20,55),(21,56),(22,57),(23,58),(24,59),(25,60),(26,61),(27,62),(28,63),(29,64),(30,65),(31,66),(32,67),(33,68),(34,69),(35,70),(36,71),(37,72),(38,73),(39,74),(40,75),(41,76),(42,77),(78,120),(79,121),(80,122),(81,123),(82,124),(83,125),(84,126),(85,127),(86,128),(87,129),(88,130),(89,131),(90,132),(91,133),(92,134),(93,135),(94,136),(95,137),(96,138),(97,139),(98,140),(99,141),(100,142),(101,143),(102,144),(103,145),(104,146),(105,147),(106,148),(107,149),(108,150),(109,151),(110,152),(111,153),(112,154),(113,155),(114,156),(115,157),(116,158),(117,159),(118,160),(119,161)], [(1,50,43),(2,51,44),(3,52,45),(4,53,46),(5,54,47),(6,55,48),(7,56,49),(8,162,15),(9,163,16),(10,164,17),(11,165,18),(12,166,19),(13,167,20),(14,168,21),(22,36,29),(23,37,30),(24,38,31),(25,39,32),(26,40,33),(27,41,34),(28,42,35),(57,71,64),(58,72,65),(59,73,66),(60,74,67),(61,75,68),(62,76,69),(63,77,70),(78,92,85),(79,93,86),(80,94,87),(81,95,88),(82,96,89),(83,97,90),(84,98,91),(99,113,106),(100,114,107),(101,115,108),(102,116,109),(103,117,110),(104,118,111),(105,119,112),(120,134,127),(121,135,128),(122,136,129),(123,137,130),(124,138,131),(125,139,132),(126,140,133),(141,155,148),(142,156,149),(143,157,150),(144,158,151),(145,159,152),(146,160,153),(147,161,154)], [(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,29),(16,30),(17,31),(18,32),(19,33),(20,34),(21,35),(22,162),(23,163),(24,164),(25,165),(26,166),(27,167),(28,168),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56),(64,71),(65,72),(66,73),(67,74),(68,75),(69,76),(70,77),(78,99),(79,100),(80,101),(81,102),(82,103),(83,104),(84,105),(85,113),(86,114),(87,115),(88,116),(89,117),(90,118),(91,119),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112),(127,134),(128,135),(129,136),(130,137),(131,138),(132,139),(133,140),(148,155),(149,156),(150,157),(151,158),(152,159),(153,160),(154,161)]])

105 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E6A6B6C7A···7F 12 14A···14F14G···14R14S···14X21A···21F28A···28F28G···28R28S···28AD42A···42F42G···42R84A···84F
order122223444446667···71214···1414···1414···1421···2128···2828···2828···2842···4242···4284···84
size112262233662441···141···12···26···62···22···23···36···62···24···44···4

105 irreducible representations

dim1111111111112222222244
type+++++++++-
imageC1C2C2C2C2C2C7C14C14C14C14C14S3D6D6C4○D4S3×C7S3×C14S3×C14C7×C4○D4D42S3C7×D42S3
kernelC7×D42S3C7×Dic6S3×C28Dic3×C14C7×C3⋊D4D4×C21D42S3Dic6C4×S3C2×Dic3C3⋊D4C3×D4C7×D4C28C2×C14C21D4C4C22C3C7C1
# reps11122166612126112266121216

Matrix representation of C7×D42S3 in GL4(𝔽337) generated by

8000
0800
00520
00052
,
148000
18918900
003360
000336
,
14829600
18918900
0010
0001
,
1000
0100
003361
003360
,
1000
33633600
0001
0010
G:=sub<GL(4,GF(337))| [8,0,0,0,0,8,0,0,0,0,52,0,0,0,0,52],[148,189,0,0,0,189,0,0,0,0,336,0,0,0,0,336],[148,189,0,0,296,189,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,336,336,0,0,1,0],[1,336,0,0,0,336,0,0,0,0,0,1,0,0,1,0] >;

C7×D42S3 in GAP, Magma, Sage, TeX

C_7\times D_4\rtimes_2S_3
% in TeX

G:=Group("C7xD4:2S3");
// GroupNames label

G:=SmallGroup(336,189);
// by ID

G=gap.SmallGroup(336,189);
# by ID

G:=PCGroup([6,-2,-2,-2,-7,-2,-3,343,1082,548,8069]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^4=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽