Copied to
clipboard

G = Dic3.D14order 336 = 24·3·7

6th non-split extension by Dic3 of D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6.4D14, Dic7.9D6, C42.19C23, Dic3.6D14, D42.4C22, Dic21.6C22, C21⋊Q86C2, C3⋊D43D7, D21⋊C44C2, C74(C4○D12), C217D44C2, C7⋊D124C2, (C2×C14).2D6, C2110(C4○D4), C33(D42D7), (C6×Dic7)⋊4C2, (S3×Dic7)⋊4C2, (C2×Dic7)⋊3S3, (C2×C6).14D14, C22.2(S3×D7), C6.19(C22×D7), (S3×C14).4C22, C14.19(C22×S3), (C2×C42).13C22, (C7×Dic3).6C22, (C3×Dic7).11C22, C2.20(C2×S3×D7), (C7×C3⋊D4)⋊2C2, SmallGroup(336,155)

Series: Derived Chief Lower central Upper central

C1C42 — Dic3.D14
C1C7C21C42C3×Dic7S3×Dic7 — Dic3.D14
C21C42 — Dic3.D14
C1C2C22

Generators and relations for Dic3.D14
 G = < a,b,c,d | a42=c2=d2=1, b2=a21, bab-1=a13, cac=a29, ad=da, bc=cb, bd=db, dcd=a21c >

Subgroups: 428 in 80 conjugacy classes, 32 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C7, C2×C4, D4, Q8, Dic3, Dic3, C12, D6, D6, C2×C6, D7, C14, C14, C4○D4, C21, Dic6, C4×S3, D12, C3⋊D4, C3⋊D4, C2×C12, Dic7, Dic7, C28, D14, C2×C14, C2×C14, S3×C7, D21, C42, C42, C4○D12, Dic14, C4×D7, C2×Dic7, C2×Dic7, C7⋊D4, C7×D4, C7×Dic3, C3×Dic7, Dic21, S3×C14, D42, C2×C42, D42D7, S3×Dic7, D21⋊C4, C7⋊D12, C21⋊Q8, C6×Dic7, C7×C3⋊D4, C217D4, Dic3.D14
Quotients: C1, C2, C22, S3, C23, D6, D7, C4○D4, C22×S3, D14, C4○D12, C22×D7, S3×D7, D42D7, C2×S3×D7, Dic3.D14

Smallest permutation representation of Dic3.D14
On 168 points
Generators in S168
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 134 22 155)(2 147 23 168)(3 160 24 139)(4 131 25 152)(5 144 26 165)(6 157 27 136)(7 128 28 149)(8 141 29 162)(9 154 30 133)(10 167 31 146)(11 138 32 159)(12 151 33 130)(13 164 34 143)(14 135 35 156)(15 148 36 127)(16 161 37 140)(17 132 38 153)(18 145 39 166)(19 158 40 137)(20 129 41 150)(21 142 42 163)(43 99 64 120)(44 112 65 91)(45 125 66 104)(46 96 67 117)(47 109 68 88)(48 122 69 101)(49 93 70 114)(50 106 71 85)(51 119 72 98)(52 90 73 111)(53 103 74 124)(54 116 75 95)(55 87 76 108)(56 100 77 121)(57 113 78 92)(58 126 79 105)(59 97 80 118)(60 110 81 89)(61 123 82 102)(62 94 83 115)(63 107 84 86)
(1 99)(2 86)(3 115)(4 102)(5 89)(6 118)(7 105)(8 92)(9 121)(10 108)(11 95)(12 124)(13 111)(14 98)(15 85)(16 114)(17 101)(18 88)(19 117)(20 104)(21 91)(22 120)(23 107)(24 94)(25 123)(26 110)(27 97)(28 126)(29 113)(30 100)(31 87)(32 116)(33 103)(34 90)(35 119)(36 106)(37 93)(38 122)(39 109)(40 96)(41 125)(42 112)(43 155)(44 142)(45 129)(46 158)(47 145)(48 132)(49 161)(50 148)(51 135)(52 164)(53 151)(54 138)(55 167)(56 154)(57 141)(58 128)(59 157)(60 144)(61 131)(62 160)(63 147)(64 134)(65 163)(66 150)(67 137)(68 166)(69 153)(70 140)(71 127)(72 156)(73 143)(74 130)(75 159)(76 146)(77 133)(78 162)(79 149)(80 136)(81 165)(82 152)(83 139)(84 168)
(1 64)(2 65)(3 66)(4 67)(5 68)(6 69)(7 70)(8 71)(9 72)(10 73)(11 74)(12 75)(13 76)(14 77)(15 78)(16 79)(17 80)(18 81)(19 82)(20 83)(21 84)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(29 50)(30 51)(31 52)(32 53)(33 54)(34 55)(35 56)(36 57)(37 58)(38 59)(39 60)(40 61)(41 62)(42 63)(85 141)(86 142)(87 143)(88 144)(89 145)(90 146)(91 147)(92 148)(93 149)(94 150)(95 151)(96 152)(97 153)(98 154)(99 155)(100 156)(101 157)(102 158)(103 159)(104 160)(105 161)(106 162)(107 163)(108 164)(109 165)(110 166)(111 167)(112 168)(113 127)(114 128)(115 129)(116 130)(117 131)(118 132)(119 133)(120 134)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)

G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,134,22,155)(2,147,23,168)(3,160,24,139)(4,131,25,152)(5,144,26,165)(6,157,27,136)(7,128,28,149)(8,141,29,162)(9,154,30,133)(10,167,31,146)(11,138,32,159)(12,151,33,130)(13,164,34,143)(14,135,35,156)(15,148,36,127)(16,161,37,140)(17,132,38,153)(18,145,39,166)(19,158,40,137)(20,129,41,150)(21,142,42,163)(43,99,64,120)(44,112,65,91)(45,125,66,104)(46,96,67,117)(47,109,68,88)(48,122,69,101)(49,93,70,114)(50,106,71,85)(51,119,72,98)(52,90,73,111)(53,103,74,124)(54,116,75,95)(55,87,76,108)(56,100,77,121)(57,113,78,92)(58,126,79,105)(59,97,80,118)(60,110,81,89)(61,123,82,102)(62,94,83,115)(63,107,84,86), (1,99)(2,86)(3,115)(4,102)(5,89)(6,118)(7,105)(8,92)(9,121)(10,108)(11,95)(12,124)(13,111)(14,98)(15,85)(16,114)(17,101)(18,88)(19,117)(20,104)(21,91)(22,120)(23,107)(24,94)(25,123)(26,110)(27,97)(28,126)(29,113)(30,100)(31,87)(32,116)(33,103)(34,90)(35,119)(36,106)(37,93)(38,122)(39,109)(40,96)(41,125)(42,112)(43,155)(44,142)(45,129)(46,158)(47,145)(48,132)(49,161)(50,148)(51,135)(52,164)(53,151)(54,138)(55,167)(56,154)(57,141)(58,128)(59,157)(60,144)(61,131)(62,160)(63,147)(64,134)(65,163)(66,150)(67,137)(68,166)(69,153)(70,140)(71,127)(72,156)(73,143)(74,130)(75,159)(76,146)(77,133)(78,162)(79,149)(80,136)(81,165)(82,152)(83,139)(84,168), (1,64)(2,65)(3,66)(4,67)(5,68)(6,69)(7,70)(8,71)(9,72)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,81)(19,82)(20,83)(21,84)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,61)(41,62)(42,63)(85,141)(86,142)(87,143)(88,144)(89,145)(90,146)(91,147)(92,148)(93,149)(94,150)(95,151)(96,152)(97,153)(98,154)(99,155)(100,156)(101,157)(102,158)(103,159)(104,160)(105,161)(106,162)(107,163)(108,164)(109,165)(110,166)(111,167)(112,168)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,134,22,155)(2,147,23,168)(3,160,24,139)(4,131,25,152)(5,144,26,165)(6,157,27,136)(7,128,28,149)(8,141,29,162)(9,154,30,133)(10,167,31,146)(11,138,32,159)(12,151,33,130)(13,164,34,143)(14,135,35,156)(15,148,36,127)(16,161,37,140)(17,132,38,153)(18,145,39,166)(19,158,40,137)(20,129,41,150)(21,142,42,163)(43,99,64,120)(44,112,65,91)(45,125,66,104)(46,96,67,117)(47,109,68,88)(48,122,69,101)(49,93,70,114)(50,106,71,85)(51,119,72,98)(52,90,73,111)(53,103,74,124)(54,116,75,95)(55,87,76,108)(56,100,77,121)(57,113,78,92)(58,126,79,105)(59,97,80,118)(60,110,81,89)(61,123,82,102)(62,94,83,115)(63,107,84,86), (1,99)(2,86)(3,115)(4,102)(5,89)(6,118)(7,105)(8,92)(9,121)(10,108)(11,95)(12,124)(13,111)(14,98)(15,85)(16,114)(17,101)(18,88)(19,117)(20,104)(21,91)(22,120)(23,107)(24,94)(25,123)(26,110)(27,97)(28,126)(29,113)(30,100)(31,87)(32,116)(33,103)(34,90)(35,119)(36,106)(37,93)(38,122)(39,109)(40,96)(41,125)(42,112)(43,155)(44,142)(45,129)(46,158)(47,145)(48,132)(49,161)(50,148)(51,135)(52,164)(53,151)(54,138)(55,167)(56,154)(57,141)(58,128)(59,157)(60,144)(61,131)(62,160)(63,147)(64,134)(65,163)(66,150)(67,137)(68,166)(69,153)(70,140)(71,127)(72,156)(73,143)(74,130)(75,159)(76,146)(77,133)(78,162)(79,149)(80,136)(81,165)(82,152)(83,139)(84,168), (1,64)(2,65)(3,66)(4,67)(5,68)(6,69)(7,70)(8,71)(9,72)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,81)(19,82)(20,83)(21,84)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,61)(41,62)(42,63)(85,141)(86,142)(87,143)(88,144)(89,145)(90,146)(91,147)(92,148)(93,149)(94,150)(95,151)(96,152)(97,153)(98,154)(99,155)(100,156)(101,157)(102,158)(103,159)(104,160)(105,161)(106,162)(107,163)(108,164)(109,165)(110,166)(111,167)(112,168)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,134,22,155),(2,147,23,168),(3,160,24,139),(4,131,25,152),(5,144,26,165),(6,157,27,136),(7,128,28,149),(8,141,29,162),(9,154,30,133),(10,167,31,146),(11,138,32,159),(12,151,33,130),(13,164,34,143),(14,135,35,156),(15,148,36,127),(16,161,37,140),(17,132,38,153),(18,145,39,166),(19,158,40,137),(20,129,41,150),(21,142,42,163),(43,99,64,120),(44,112,65,91),(45,125,66,104),(46,96,67,117),(47,109,68,88),(48,122,69,101),(49,93,70,114),(50,106,71,85),(51,119,72,98),(52,90,73,111),(53,103,74,124),(54,116,75,95),(55,87,76,108),(56,100,77,121),(57,113,78,92),(58,126,79,105),(59,97,80,118),(60,110,81,89),(61,123,82,102),(62,94,83,115),(63,107,84,86)], [(1,99),(2,86),(3,115),(4,102),(5,89),(6,118),(7,105),(8,92),(9,121),(10,108),(11,95),(12,124),(13,111),(14,98),(15,85),(16,114),(17,101),(18,88),(19,117),(20,104),(21,91),(22,120),(23,107),(24,94),(25,123),(26,110),(27,97),(28,126),(29,113),(30,100),(31,87),(32,116),(33,103),(34,90),(35,119),(36,106),(37,93),(38,122),(39,109),(40,96),(41,125),(42,112),(43,155),(44,142),(45,129),(46,158),(47,145),(48,132),(49,161),(50,148),(51,135),(52,164),(53,151),(54,138),(55,167),(56,154),(57,141),(58,128),(59,157),(60,144),(61,131),(62,160),(63,147),(64,134),(65,163),(66,150),(67,137),(68,166),(69,153),(70,140),(71,127),(72,156),(73,143),(74,130),(75,159),(76,146),(77,133),(78,162),(79,149),(80,136),(81,165),(82,152),(83,139),(84,168)], [(1,64),(2,65),(3,66),(4,67),(5,68),(6,69),(7,70),(8,71),(9,72),(10,73),(11,74),(12,75),(13,76),(14,77),(15,78),(16,79),(17,80),(18,81),(19,82),(20,83),(21,84),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(29,50),(30,51),(31,52),(32,53),(33,54),(34,55),(35,56),(36,57),(37,58),(38,59),(39,60),(40,61),(41,62),(42,63),(85,141),(86,142),(87,143),(88,144),(89,145),(90,146),(91,147),(92,148),(93,149),(94,150),(95,151),(96,152),(97,153),(98,154),(99,155),(100,156),(101,157),(102,158),(103,159),(104,160),(105,161),(106,162),(107,163),(108,164),(109,165),(110,166),(111,167),(112,168),(113,127),(114,128),(115,129),(116,130),(117,131),(118,132),(119,133),(120,134),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140)]])

45 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E6A6B6C7A7B7C12A12B12C12D14A14B14C14D14E14F14G14H14I21A21B21C28A28B28C42A···42I
order122223444446667771212121214141414141414141421212128282842···42
size11264226771442222222141414142224441212124441212124···4

45 irreducible representations

dim111111112222222224444
type++++++++++++++++-+
imageC1C2C2C2C2C2C2C2S3D6D6D7C4○D4D14D14D14C4○D12S3×D7D42D7C2×S3×D7Dic3.D14
kernelDic3.D14S3×Dic7D21⋊C4C7⋊D12C21⋊Q8C6×Dic7C7×C3⋊D4C217D4C2×Dic7Dic7C2×C14C3⋊D4C21Dic3D6C2×C6C7C22C3C2C1
# reps111111111213233343336

Matrix representation of Dic3.D14 in GL4(𝔽337) generated by

0100
336100
00228336
00229336
,
189000
018900
00228336
0085109
,
32232200
3071500
0010
0001
,
19827800
5913900
003360
000336
G:=sub<GL(4,GF(337))| [0,336,0,0,1,1,0,0,0,0,228,229,0,0,336,336],[189,0,0,0,0,189,0,0,0,0,228,85,0,0,336,109],[322,307,0,0,322,15,0,0,0,0,1,0,0,0,0,1],[198,59,0,0,278,139,0,0,0,0,336,0,0,0,0,336] >;

Dic3.D14 in GAP, Magma, Sage, TeX

{\rm Dic}_3.D_{14}
% in TeX

G:=Group("Dic3.D14");
// GroupNames label

G:=SmallGroup(336,155);
// by ID

G=gap.SmallGroup(336,155);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,48,116,490,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^42=c^2=d^2=1,b^2=a^21,b*a*b^-1=a^13,c*a*c=a^29,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=a^21*c>;
// generators/relations

׿
×
𝔽