Extensions 1→N→G→Q→1 with N=C7×Dic3 and Q=C4

Direct product G=N×Q with N=C7×Dic3 and Q=C4
dρLabelID
Dic3×C28336Dic3xC28336,81

Semidirect products G=N:Q with N=C7×Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C7×Dic3)⋊1C4 = Dic3×Dic7φ: C4/C2C2 ⊆ Out C7×Dic3336(C7xDic3):1C4336,41
(C7×Dic3)⋊2C4 = C14.Dic6φ: C4/C2C2 ⊆ Out C7×Dic3336(C7xDic3):2C4336,47
(C7×Dic3)⋊3C4 = C7×Dic3⋊C4φ: C4/C2C2 ⊆ Out C7×Dic3336(C7xDic3):3C4336,82

Non-split extensions G=N.Q with N=C7×Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C7×Dic3).1C4 = S3×C7⋊C8φ: C4/C2C2 ⊆ Out C7×Dic31684(C7xDic3).1C4336,24
(C7×Dic3).2C4 = D6.Dic7φ: C4/C2C2 ⊆ Out C7×Dic31684(C7xDic3).2C4336,27
(C7×Dic3).3C4 = C7×C8⋊S3φ: C4/C2C2 ⊆ Out C7×Dic31682(C7xDic3).3C4336,75
(C7×Dic3).4C4 = S3×C56φ: trivial image1682(C7xDic3).4C4336,74

׿
×
𝔽