Copied to
clipboard

G = S3×C56order 336 = 24·3·7

Direct product of C56 and S3

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×C56, C244C14, C16812C2, D6.2C28, C28.56D6, C84.73C22, Dic3.2C28, C3⋊C86C14, C31(C2×C56), C216(C2×C8), C2.1(S3×C28), C6.1(C2×C28), (C4×S3).3C14, (S3×C28).6C2, (S3×C14).4C4, C4.12(S3×C14), C14.15(C4×S3), C42.24(C2×C4), C12.12(C2×C14), (C7×Dic3).4C4, (C7×C3⋊C8)⋊13C2, SmallGroup(336,74)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C56
C1C3C6C12C84S3×C28 — S3×C56
C3 — S3×C56
C1C56

Generators and relations for S3×C56
 G = < a,b,c | a56=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >

3C2
3C2
3C22
3C4
3C14
3C14
3C8
3C2×C4
3C28
3C2×C14
3C2×C8
3C2×C28
3C56
3C2×C56

Smallest permutation representation of S3×C56
On 168 points
Generators in S168
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 75 130)(2 76 131)(3 77 132)(4 78 133)(5 79 134)(6 80 135)(7 81 136)(8 82 137)(9 83 138)(10 84 139)(11 85 140)(12 86 141)(13 87 142)(14 88 143)(15 89 144)(16 90 145)(17 91 146)(18 92 147)(19 93 148)(20 94 149)(21 95 150)(22 96 151)(23 97 152)(24 98 153)(25 99 154)(26 100 155)(27 101 156)(28 102 157)(29 103 158)(30 104 159)(31 105 160)(32 106 161)(33 107 162)(34 108 163)(35 109 164)(36 110 165)(37 111 166)(38 112 167)(39 57 168)(40 58 113)(41 59 114)(42 60 115)(43 61 116)(44 62 117)(45 63 118)(46 64 119)(47 65 120)(48 66 121)(49 67 122)(50 68 123)(51 69 124)(52 70 125)(53 71 126)(54 72 127)(55 73 128)(56 74 129)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(57 140)(58 141)(59 142)(60 143)(61 144)(62 145)(63 146)(64 147)(65 148)(66 149)(67 150)(68 151)(69 152)(70 153)(71 154)(72 155)(73 156)(74 157)(75 158)(76 159)(77 160)(78 161)(79 162)(80 163)(81 164)(82 165)(83 166)(84 167)(85 168)(86 113)(87 114)(88 115)(89 116)(90 117)(91 118)(92 119)(93 120)(94 121)(95 122)(96 123)(97 124)(98 125)(99 126)(100 127)(101 128)(102 129)(103 130)(104 131)(105 132)(106 133)(107 134)(108 135)(109 136)(110 137)(111 138)(112 139)

G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,75,130)(2,76,131)(3,77,132)(4,78,133)(5,79,134)(6,80,135)(7,81,136)(8,82,137)(9,83,138)(10,84,139)(11,85,140)(12,86,141)(13,87,142)(14,88,143)(15,89,144)(16,90,145)(17,91,146)(18,92,147)(19,93,148)(20,94,149)(21,95,150)(22,96,151)(23,97,152)(24,98,153)(25,99,154)(26,100,155)(27,101,156)(28,102,157)(29,103,158)(30,104,159)(31,105,160)(32,106,161)(33,107,162)(34,108,163)(35,109,164)(36,110,165)(37,111,166)(38,112,167)(39,57,168)(40,58,113)(41,59,114)(42,60,115)(43,61,116)(44,62,117)(45,63,118)(46,64,119)(47,65,120)(48,66,121)(49,67,122)(50,68,123)(51,69,124)(52,70,125)(53,71,126)(54,72,127)(55,73,128)(56,74,129), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,140)(58,141)(59,142)(60,143)(61,144)(62,145)(63,146)(64,147)(65,148)(66,149)(67,150)(68,151)(69,152)(70,153)(71,154)(72,155)(73,156)(74,157)(75,158)(76,159)(77,160)(78,161)(79,162)(80,163)(81,164)(82,165)(83,166)(84,167)(85,168)(86,113)(87,114)(88,115)(89,116)(90,117)(91,118)(92,119)(93,120)(94,121)(95,122)(96,123)(97,124)(98,125)(99,126)(100,127)(101,128)(102,129)(103,130)(104,131)(105,132)(106,133)(107,134)(108,135)(109,136)(110,137)(111,138)(112,139)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,75,130)(2,76,131)(3,77,132)(4,78,133)(5,79,134)(6,80,135)(7,81,136)(8,82,137)(9,83,138)(10,84,139)(11,85,140)(12,86,141)(13,87,142)(14,88,143)(15,89,144)(16,90,145)(17,91,146)(18,92,147)(19,93,148)(20,94,149)(21,95,150)(22,96,151)(23,97,152)(24,98,153)(25,99,154)(26,100,155)(27,101,156)(28,102,157)(29,103,158)(30,104,159)(31,105,160)(32,106,161)(33,107,162)(34,108,163)(35,109,164)(36,110,165)(37,111,166)(38,112,167)(39,57,168)(40,58,113)(41,59,114)(42,60,115)(43,61,116)(44,62,117)(45,63,118)(46,64,119)(47,65,120)(48,66,121)(49,67,122)(50,68,123)(51,69,124)(52,70,125)(53,71,126)(54,72,127)(55,73,128)(56,74,129), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,140)(58,141)(59,142)(60,143)(61,144)(62,145)(63,146)(64,147)(65,148)(66,149)(67,150)(68,151)(69,152)(70,153)(71,154)(72,155)(73,156)(74,157)(75,158)(76,159)(77,160)(78,161)(79,162)(80,163)(81,164)(82,165)(83,166)(84,167)(85,168)(86,113)(87,114)(88,115)(89,116)(90,117)(91,118)(92,119)(93,120)(94,121)(95,122)(96,123)(97,124)(98,125)(99,126)(100,127)(101,128)(102,129)(103,130)(104,131)(105,132)(106,133)(107,134)(108,135)(109,136)(110,137)(111,138)(112,139) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,75,130),(2,76,131),(3,77,132),(4,78,133),(5,79,134),(6,80,135),(7,81,136),(8,82,137),(9,83,138),(10,84,139),(11,85,140),(12,86,141),(13,87,142),(14,88,143),(15,89,144),(16,90,145),(17,91,146),(18,92,147),(19,93,148),(20,94,149),(21,95,150),(22,96,151),(23,97,152),(24,98,153),(25,99,154),(26,100,155),(27,101,156),(28,102,157),(29,103,158),(30,104,159),(31,105,160),(32,106,161),(33,107,162),(34,108,163),(35,109,164),(36,110,165),(37,111,166),(38,112,167),(39,57,168),(40,58,113),(41,59,114),(42,60,115),(43,61,116),(44,62,117),(45,63,118),(46,64,119),(47,65,120),(48,66,121),(49,67,122),(50,68,123),(51,69,124),(52,70,125),(53,71,126),(54,72,127),(55,73,128),(56,74,129)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(57,140),(58,141),(59,142),(60,143),(61,144),(62,145),(63,146),(64,147),(65,148),(66,149),(67,150),(68,151),(69,152),(70,153),(71,154),(72,155),(73,156),(74,157),(75,158),(76,159),(77,160),(78,161),(79,162),(80,163),(81,164),(82,165),(83,166),(84,167),(85,168),(86,113),(87,114),(88,115),(89,116),(90,117),(91,118),(92,119),(93,120),(94,121),(95,122),(96,123),(97,124),(98,125),(99,126),(100,127),(101,128),(102,129),(103,130),(104,131),(105,132),(106,133),(107,134),(108,135),(109,136),(110,137),(111,138),(112,139)]])

168 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D 6 7A···7F8A8B8C8D8E8F8G8H12A12B14A···14F14G···14R21A···21F24A24B24C24D28A···28L28M···28X42A···42F56A···56X56Y···56AV84A···84L168A···168X
order12223444467···788888888121214···1414···1421···212424242428···2828···2842···4256···5656···5684···84168···168
size11332113321···111113333221···13···32···222221···13···32···21···13···32···22···2

168 irreducible representations

dim1111111111111122222222
type++++++
imageC1C2C2C2C4C4C7C8C14C14C14C28C28C56S3D6C4×S3S3×C7S3×C8S3×C14S3×C28S3×C56
kernelS3×C56C7×C3⋊C8C168S3×C28C7×Dic3S3×C14S3×C8S3×C7C3⋊C8C24C4×S3Dic3D6S3C56C28C14C8C7C4C2C1
# reps111122686661212481126461224

Matrix representation of S3×C56 in GL3(𝔽337) generated by

8500
0360
0036
,
100
0336336
010
,
100
001
010
G:=sub<GL(3,GF(337))| [85,0,0,0,36,0,0,0,36],[1,0,0,0,336,1,0,336,0],[1,0,0,0,0,1,0,1,0] >;

S3×C56 in GAP, Magma, Sage, TeX

S_3\times C_{56}
% in TeX

G:=Group("S3xC56");
// GroupNames label

G:=SmallGroup(336,74);
// by ID

G=gap.SmallGroup(336,74);
# by ID

G:=PCGroup([6,-2,-2,-7,-2,-2,-3,175,69,8069]);
// Polycyclic

G:=Group<a,b,c|a^56=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of S3×C56 in TeX

׿
×
𝔽