Extensions 1→N→G→Q→1 with N=C3xC9 and Q=A4

Direct product G=NxQ with N=C3xC9 and Q=A4
dρLabelID
A4xC3xC9108A4xC3xC9324,126

Semidirect products G=N:Q with N=C3xC9 and Q=A4
extensionφ:Q→Aut NdρLabelID
(C3xC9):1A4 = C62.13C32φ: A4/C22C3 ⊆ Aut C3xC9543(C3xC9):1A4324,49
(C3xC9):2A4 = C62.14C32φ: A4/C22C3 ⊆ Aut C3xC9543(C3xC9):2A4324,50
(C3xC9):3A4 = C62.16C32φ: A4/C22C3 ⊆ Aut C3xC9108(C3xC9):3A4324,52
(C3xC9):4A4 = C3xC9:A4φ: A4/C22C3 ⊆ Aut C3xC9108(C3xC9):4A4324,127
(C3xC9):5A4 = C62.25C32φ: A4/C22C3 ⊆ Aut C3xC9543(C3xC9):5A4324,128

Non-split extensions G=N.Q with N=C3xC9 and Q=A4
extensionφ:Q→Aut NdρLabelID
(C3xC9).1A4 = C62.11C32φ: A4/C22C3 ⊆ Aut C3xC9162(C3xC9).1A4324,47
(C3xC9).2A4 = C62.15C32φ: A4/C22C3 ⊆ Aut C3xC9543(C3xC9).2A4324,51
(C3xC9).3A4 = C62.C9φ: A4/C22C3 ⊆ Aut C3xC9543(C3xC9).3A4324,45
(C3xC9).4A4 = C62.12C32φ: A4/C22C3 ⊆ Aut C3xC9162(C3xC9).4A4324,48
(C3xC9).5A4 = C3xC9.A4central extension (φ=1)162(C3xC9).5A4324,44
(C3xC9).6A4 = C9xC3.A4central extension (φ=1)162(C3xC9).6A4324,46

׿
x
:
Z
F
o
wr
Q
<