Extensions 1→N→G→Q→1 with N=C3×C9 and Q=A4

Direct product G=N×Q with N=C3×C9 and Q=A4
dρLabelID
A4×C3×C9108A4xC3xC9324,126

Semidirect products G=N:Q with N=C3×C9 and Q=A4
extensionφ:Q→Aut NdρLabelID
(C3×C9)⋊1A4 = C62.13C32φ: A4/C22C3 ⊆ Aut C3×C9543(C3xC9):1A4324,49
(C3×C9)⋊2A4 = C62.14C32φ: A4/C22C3 ⊆ Aut C3×C9543(C3xC9):2A4324,50
(C3×C9)⋊3A4 = C62.16C32φ: A4/C22C3 ⊆ Aut C3×C9108(C3xC9):3A4324,52
(C3×C9)⋊4A4 = C3×C9⋊A4φ: A4/C22C3 ⊆ Aut C3×C9108(C3xC9):4A4324,127
(C3×C9)⋊5A4 = C62.25C32φ: A4/C22C3 ⊆ Aut C3×C9543(C3xC9):5A4324,128

Non-split extensions G=N.Q with N=C3×C9 and Q=A4
extensionφ:Q→Aut NdρLabelID
(C3×C9).1A4 = C62.11C32φ: A4/C22C3 ⊆ Aut C3×C9162(C3xC9).1A4324,47
(C3×C9).2A4 = C62.15C32φ: A4/C22C3 ⊆ Aut C3×C9543(C3xC9).2A4324,51
(C3×C9).3A4 = C62.C9φ: A4/C22C3 ⊆ Aut C3×C9543(C3xC9).3A4324,45
(C3×C9).4A4 = C62.12C32φ: A4/C22C3 ⊆ Aut C3×C9162(C3xC9).4A4324,48
(C3×C9).5A4 = C3×C9.A4central extension (φ=1)162(C3xC9).5A4324,44
(C3×C9).6A4 = C9×C3.A4central extension (φ=1)162(C3xC9).6A4324,46

׿
×
𝔽