direct product, p-group, abelian, monomial
Aliases: C3×C9, SmallGroup(27,2)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C3×C9 |
C1 — C3×C9 |
C1 — C3×C9 |
Generators and relations for C3×C9
G = < a,b | a3=b9=1, ab=ba >
Character table of C3×C9
class | 1 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 9J | 9K | 9L | 9M | 9N | 9O | 9P | 9Q | 9R | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ32 | ζ32 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ3 | 1 | ζ3 | ζ3 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ4 | 1 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | ζ9 | ζ9 | ζ9 | ζ92 | ζ92 | ζ92 | ζ94 | ζ97 | ζ94 | ζ97 | ζ94 | ζ97 | ζ95 | ζ98 | ζ95 | ζ98 | ζ95 | ζ98 | linear of order 9 |
ρ5 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | ζ9 | ζ94 | ζ97 | ζ92 | ζ95 | ζ98 | ζ94 | ζ97 | ζ97 | ζ9 | ζ9 | ζ94 | ζ95 | ζ98 | ζ98 | ζ92 | ζ92 | ζ95 | linear of order 9 |
ρ6 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ9 | ζ97 | ζ94 | ζ92 | ζ98 | ζ95 | ζ94 | ζ97 | ζ9 | ζ94 | ζ97 | ζ9 | ζ95 | ζ98 | ζ92 | ζ95 | ζ98 | ζ92 | linear of order 9 |
ρ7 | 1 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | ζ92 | ζ92 | ζ92 | ζ94 | ζ94 | ζ94 | ζ98 | ζ95 | ζ98 | ζ95 | ζ98 | ζ95 | ζ9 | ζ97 | ζ9 | ζ97 | ζ9 | ζ97 | linear of order 9 |
ρ8 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ92 | ζ95 | ζ98 | ζ94 | ζ97 | ζ9 | ζ98 | ζ95 | ζ92 | ζ98 | ζ95 | ζ92 | ζ9 | ζ97 | ζ94 | ζ9 | ζ97 | ζ94 | linear of order 9 |
ρ9 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | ζ92 | ζ98 | ζ95 | ζ94 | ζ9 | ζ97 | ζ98 | ζ95 | ζ95 | ζ92 | ζ92 | ζ98 | ζ9 | ζ97 | ζ97 | ζ94 | ζ94 | ζ9 | linear of order 9 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ11 | 1 | ζ32 | ζ32 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | ζ32 | ζ32 | 1 | 1 | ζ3 | ζ3 | linear of order 3 |
ρ12 | 1 | ζ3 | ζ3 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | ζ3 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | linear of order 3 |
ρ13 | 1 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | ζ94 | ζ94 | ζ94 | ζ98 | ζ98 | ζ98 | ζ97 | ζ9 | ζ97 | ζ9 | ζ97 | ζ9 | ζ92 | ζ95 | ζ92 | ζ95 | ζ92 | ζ95 | linear of order 9 |
ρ14 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | ζ94 | ζ97 | ζ9 | ζ98 | ζ92 | ζ95 | ζ97 | ζ9 | ζ9 | ζ94 | ζ94 | ζ97 | ζ92 | ζ95 | ζ95 | ζ98 | ζ98 | ζ92 | linear of order 9 |
ρ15 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ94 | ζ9 | ζ97 | ζ98 | ζ95 | ζ92 | ζ97 | ζ9 | ζ94 | ζ97 | ζ9 | ζ94 | ζ92 | ζ95 | ζ98 | ζ92 | ζ95 | ζ98 | linear of order 9 |
ρ16 | 1 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | ζ95 | ζ95 | ζ95 | ζ9 | ζ9 | ζ9 | ζ92 | ζ98 | ζ92 | ζ98 | ζ92 | ζ98 | ζ97 | ζ94 | ζ97 | ζ94 | ζ97 | ζ94 | linear of order 9 |
ρ17 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ95 | ζ98 | ζ92 | ζ9 | ζ94 | ζ97 | ζ92 | ζ98 | ζ95 | ζ92 | ζ98 | ζ95 | ζ97 | ζ94 | ζ9 | ζ97 | ζ94 | ζ9 | linear of order 9 |
ρ18 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | ζ95 | ζ92 | ζ98 | ζ9 | ζ97 | ζ94 | ζ92 | ζ98 | ζ98 | ζ95 | ζ95 | ζ92 | ζ97 | ζ94 | ζ94 | ζ9 | ζ9 | ζ97 | linear of order 9 |
ρ19 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ20 | 1 | ζ32 | ζ32 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | ζ32 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | linear of order 3 |
ρ21 | 1 | ζ3 | ζ3 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | ζ3 | ζ3 | 1 | 1 | ζ32 | ζ32 | linear of order 3 |
ρ22 | 1 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | ζ97 | ζ97 | ζ97 | ζ95 | ζ95 | ζ95 | ζ9 | ζ94 | ζ9 | ζ94 | ζ9 | ζ94 | ζ98 | ζ92 | ζ98 | ζ92 | ζ98 | ζ92 | linear of order 9 |
ρ23 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | ζ97 | ζ9 | ζ94 | ζ95 | ζ98 | ζ92 | ζ9 | ζ94 | ζ94 | ζ97 | ζ97 | ζ9 | ζ98 | ζ92 | ζ92 | ζ95 | ζ95 | ζ98 | linear of order 9 |
ρ24 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ97 | ζ94 | ζ9 | ζ95 | ζ92 | ζ98 | ζ9 | ζ94 | ζ97 | ζ9 | ζ94 | ζ97 | ζ98 | ζ92 | ζ95 | ζ98 | ζ92 | ζ95 | linear of order 9 |
ρ25 | 1 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | ζ98 | ζ98 | ζ98 | ζ97 | ζ97 | ζ97 | ζ95 | ζ92 | ζ95 | ζ92 | ζ95 | ζ92 | ζ94 | ζ9 | ζ94 | ζ9 | ζ94 | ζ9 | linear of order 9 |
ρ26 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ98 | ζ92 | ζ95 | ζ97 | ζ9 | ζ94 | ζ95 | ζ92 | ζ98 | ζ95 | ζ92 | ζ98 | ζ94 | ζ9 | ζ97 | ζ94 | ζ9 | ζ97 | linear of order 9 |
ρ27 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | ζ98 | ζ95 | ζ92 | ζ97 | ζ94 | ζ9 | ζ95 | ζ92 | ζ92 | ζ98 | ζ98 | ζ95 | ζ94 | ζ9 | ζ9 | ζ97 | ζ97 | ζ94 | linear of order 9 |
(1 23 18)(2 24 10)(3 25 11)(4 26 12)(5 27 13)(6 19 14)(7 20 15)(8 21 16)(9 22 17)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
G:=sub<Sym(27)| (1,23,18)(2,24,10)(3,25,11)(4,26,12)(5,27,13)(6,19,14)(7,20,15)(8,21,16)(9,22,17), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)>;
G:=Group( (1,23,18)(2,24,10)(3,25,11)(4,26,12)(5,27,13)(6,19,14)(7,20,15)(8,21,16)(9,22,17), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27) );
G=PermutationGroup([[(1,23,18),(2,24,10),(3,25,11),(4,26,12),(5,27,13),(6,19,14),(7,20,15),(8,21,16),(9,22,17)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)]])
G:=TransitiveGroup(27,2);
C3×C9 is a maximal subgroup of
C9⋊S3 C32⋊C9 C9⋊C9 C27⋊C3 He3.C3 He3⋊C3 C3.He3 C9○He3
C3×C9 is a maximal quotient of
C32⋊C9 C9⋊C9 C27⋊C3
Matrix representation of C3×C9 ►in GL2(𝔽19) generated by
1 | 0 |
0 | 7 |
16 | 0 |
0 | 17 |
G:=sub<GL(2,GF(19))| [1,0,0,7],[16,0,0,17] >;
C3×C9 in GAP, Magma, Sage, TeX
C_3\times C_9
% in TeX
G:=Group("C3xC9");
// GroupNames label
G:=SmallGroup(27,2);
// by ID
G=gap.SmallGroup(27,2);
# by ID
G:=PCGroup([3,-3,3,-3,27]);
// Polycyclic
G:=Group<a,b|a^3=b^9=1,a*b=b*a>;
// generators/relations
Export
Subgroup lattice of C3×C9 in TeX
Character table of C3×C9 in TeX